These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 31457729)
1. Realtime Observation of Diffusing Elements in a Chemical Garden. Zhao W; Sakurai K ACS Omega; 2017 Aug; 2(8):4363-4369. PubMed ID: 31457729 [TBL] [Abstract][Full Text] [Related]
2. Comparative Evaluation of Chemical Garden Growth Techniques. Aslanbay Guler B; Demirel Z; Imamoglu E Langmuir; 2023 Sep; 39(38):13611-13619. PubMed ID: 37712591 [TBL] [Abstract][Full Text] [Related]
3. Multi-element X-ray movie imaging with a visible-light CMOS camera. Zhao W; Sakurai K J Synchrotron Radiat; 2019 Jan; 26(Pt 1):230-233. PubMed ID: 30655489 [TBL] [Abstract][Full Text] [Related]
4. Element-specific detection in capillary electrophoresis using X-ray fluorescence spectroscopy. Mann SE; Ringo MC; Shea-McCarthy G; Penner-Hahn J; Evans CE Anal Chem; 2000 Apr; 72(8):1754-8. PubMed ID: 10784138 [TBL] [Abstract][Full Text] [Related]
5. Quantitative Chemical Analysis of Archaeological Slag Material Using Handheld X-ray Fluorescence Spectrometry. Scott RB; Eekelers K; Degryse P Appl Spectrosc; 2016 Jan; 70(1):94-109. PubMed ID: 26767636 [TBL] [Abstract][Full Text] [Related]
6. Unified Theory for Decoding the Signals from X-Ray Florescence and X-Ray Diffraction of Mixtures. Chung FH Appl Spectrosc; 2017 May; 71(5):1060-1068. PubMed ID: 27553647 [TBL] [Abstract][Full Text] [Related]
7. Garden nasturtium (Tropaeolum majus L.) - a source of mineral elements and bioactive compounds. Jakubczyk K; Janda K; Watychowicz K; Łukasiak J; Wolska J Rocz Panstw Zakl Hig; 2018; 69(2):119-126. PubMed ID: 29766690 [TBL] [Abstract][Full Text] [Related]
8. Handheld X-ray Fluorescence (XRF) Versus Wavelength Dispersive XRF: Characterization of Chinese Blue-and-White Porcelain Sherds Using Handheld and Laboratory-Type XRF Instruments. Simsek Franci G Appl Spectrosc; 2020 Mar; 74(3):314-322. PubMed ID: 31724430 [TBL] [Abstract][Full Text] [Related]
9. [Application of Three Dimensional Confocal Micro X-Ray Fluorescence Technology Based on Polycapillary X-Ray Lens in Analysis of Rock and Mineral Samples]. Li FZ; Liu ZG; Sun TX; Yi LT; Zhao WG; He JL; Peng S; Wang LL; Zhao GC; Ding XL Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Sep; 35(9):2487-91. PubMed ID: 26669153 [TBL] [Abstract][Full Text] [Related]
10. Macroscopic X-ray Powder Diffraction Scanning, a New Method for Highly Selective Chemical Imaging of Works of Art: Instrument Optimization. Vanmeert F; De Nolf W; De Meyer S; Dik J; Janssens K Anal Chem; 2018 Jun; 90(11):6436-6444. PubMed ID: 29624052 [TBL] [Abstract][Full Text] [Related]
11. Biologically Analogous Calcium Phosphate Tubes from a Chemical Garden. Hughes EA; Williams RL; Cox SC; Grover LM Langmuir; 2017 Feb; 33(8):2059-2067. PubMed ID: 28135096 [TBL] [Abstract][Full Text] [Related]
12. Most ornamental plants on sale in garden centres are unattractive to flower-visiting insects. Garbuzov M; Alton K; Ratnieks FL PeerJ; 2017; 5():e3066. PubMed ID: 28286716 [TBL] [Abstract][Full Text] [Related]
13. Laboratory Microprobe X-Ray Fluorescence in Plant Science: Emerging Applications and Case Studies. Rodrigues ES; Gomes MHF; Duran NM; Cassanji JGB; da Cruz TNM; Sant'Anna Neto A; Savassa SM; de Almeida E; Carvalho HWP Front Plant Sci; 2018; 9():1588. PubMed ID: 30487802 [No Abstract] [Full Text] [Related]
15. Grazing-exit and micro X-ray fluorescence analyses for chemical microchips. Tsuji K; Emoto T; Nishida Y; Tamaki E; Kikutani Y; Hibara A; Kitamori T Anal Sci; 2005 Jul; 21(7):799-803. PubMed ID: 16038499 [TBL] [Abstract][Full Text] [Related]
16. Application of confocal 3D micro-XRF for solid/liquid interface analysis. Tsuji K; Yonehara T; Nakano K Anal Sci; 2008 Jan; 24(1):99-103. PubMed ID: 18187856 [TBL] [Abstract][Full Text] [Related]
17. A microfluidic labyrinth self-assembled by a chemical garden. Testón-Martínez S; Huertas-Roldán T; Knoll P; Barge LM; Sainz-Díaz CI; Cartwright JHE Phys Chem Chem Phys; 2023 Nov; 25(44):30469-30476. PubMed ID: 37921059 [TBL] [Abstract][Full Text] [Related]
18. Diagnostic Value of Energy Dispersive Hand-Held X-ray Fluorescence Spectrometry in Determining Trace Element Concentrations in Ovine Liver. van Loggerenberg DE; Laver PN; Myburgh JG; Botha CJ Biol Trace Elem Res; 2019 Aug; 190(2):358-361. PubMed ID: 30315508 [TBL] [Abstract][Full Text] [Related]
19. A comparison of X-ray fluorescence and wet chemical analysis for lead on air filters from different personal samplers used in a secondary lead smelter/solder manufacturer. Harper M; Pacolay B J Environ Monit; 2006 Jan; 8(1):140-6. PubMed ID: 16395471 [TBL] [Abstract][Full Text] [Related]
20. Gaining improved chemical composition by exploitation of Compton-to-Rayleigh intensity ratio in XRF analysis. Hodoroaba VD; Rackwitz V Anal Chem; 2014 Jul; 86(14):6858-64. PubMed ID: 24950635 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]