These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 31457772)

  • 21. Catalytic and electrocatalytic oxidation of ethanol over palladium-based nanoalloy catalysts.
    Yin J; Shan S; Ng MS; Yang L; Mott D; Fang W; Kang N; Luo J; Zhong CJ
    Langmuir; 2013 Jul; 29(29):9249-58. PubMed ID: 23841935
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Single-Atom Manipulation Approach for Synthesis of Atomically Mixed Nanoalloys as Efficient Catalysts.
    Zhou X; Li K; Lin Y; Song L; Liu J; Liu Y; Zhang L; Wu Z; Song S; Li J; Zhang H
    Angew Chem Int Ed Engl; 2020 Aug; 59(32):13568-13574. PubMed ID: 32495981
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Design of High-Performance Co-Based Alloy Nanocatalysts for the Oxygen Reduction Reaction.
    Zhao Z; Xu H; Feng Z; Zhang Y; Cui M; Cao D; Cheng D
    Chemistry; 2020 Mar; 26(18):4128-4135. PubMed ID: 31797431
    [TBL] [Abstract][Full Text] [Related]  

  • 24. CoPd Nanoalloys with Metal-Organic Framework as Template for Both N-Doped Carbon and Cobalt Precursor: Efficient and Robust Catalysts for Hydrogenation Reactions.
    Zhu J; Xu D; Ding LJ; Wang PC
    Chemistry; 2021 Feb; 27(8):2707-2716. PubMed ID: 33084099
    [TBL] [Abstract][Full Text] [Related]  

  • 25. One-pot synthesis of carbon-supported dendritic Pd-Au nanoalloys for electrocatalytic ethanol oxidation.
    Kang SW; Lee YW; Kim M; Hong JW; Han SW
    Chem Asian J; 2011 Mar; 6(3):909-13. PubMed ID: 21140400
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hollow Multiple Noble Metallic Nanoalloys by Mercury-Assisted Galvanic Replacement Reaction for Hydrogen Evolution.
    Wang N; Cao P; Sun S; Ma H; Lin M
    Inorg Chem; 2021 Mar; 60(5):3471-3478. PubMed ID: 33591166
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lattice Strain and Surface Activity of Ternary Nanoalloys under the Propane Oxidation Condition.
    Kareem H; Maswadeh Y; Wu ZP; Leff AC; Cheng HW; Shan S; Wang S; Robinson R; Caracciolo D; Langrock A; Mackie DM; Tran DT; Petkov V; Zhong CJ
    ACS Appl Mater Interfaces; 2022 Mar; 14(9):11435-11447. PubMed ID: 35195398
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Au Catalyst Decorated Silica Spheres: Synthesis and High-Performance in 4-Nitrophenol Reduction.
    Zhang F; Yang P; Matras-Postolek K
    J Nanosci Nanotechnol; 2016 Jun; 16(6):5966-74. PubMed ID: 27427658
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bimetallic Nanoalloy Catalysts for Green Energy Production: Advances in Synthesis Routes and Characterization Techniques.
    Ashraf S; Liu Y; Wei H; Shen R; Zhang H; Wu X; Mehdi S; Liu T; Li B
    Small; 2023 Oct; 19(43):e2303031. PubMed ID: 37356067
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In situ investigation of Pt(100--x)Au(x) and Pt(100--y)Sn(y) nanoalloys.
    Grant KA; Keryou KM; Sermon PA
    Faraday Discuss; 2008; 138():257-71; discussion 317-35, 433-4. PubMed ID: 18447020
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Strain-induced restructuring of the surface in core@shell nanoalloys.
    Panizon E; Ferrando R
    Nanoscale; 2016 Sep; 8(35):15911-9. PubMed ID: 27545724
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Preparation of yolk-shell Fe(x)O(y)/Pd@mesoporous SiO2 composites with high stability and their application in catalytic reduction of 4-nitrophenol.
    Yao T; Cui T; Fang X; Cui F; Wu J
    Nanoscale; 2013 Jul; 5(13):5896-904. PubMed ID: 23698713
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Core-shell Au@Pd nanoparticles with enhanced catalytic activity for oxygen reduction reaction via core-shell Au@Ag/Pd constructions.
    Chen D; Li C; Liu H; Ye F; Yang J
    Sci Rep; 2015 Jul; 5():11949. PubMed ID: 26144550
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Component-Controlled Synthesis of Necklace-Like Hollow Ni
    Zhang C; Liu Y; Chang Y; Lu Y; Zhao S; Xu D; Dai Z; Han M; Bao J
    ACS Appl Mater Interfaces; 2017 May; 9(20):17326-17336. PubMed ID: 28481106
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Green synthesis of Pd/walnut shell nanocomposite using Equisetum arvense L. leaf extract and its application for the reduction of 4-nitrophenol and organic dyes in a very short time.
    Bordbar M; Mortazavimanesh N
    Environ Sci Pollut Res Int; 2017 Feb; 24(4):4093-4104. PubMed ID: 27933496
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Surface reconstruction of AgPd nanoalloy particles during the electrocatalytic formate oxidation reaction.
    Guo L; Chen F; Jin T; Liu H; Zhang N; Jin Y; Wang Q; Tang Q; Pan B
    Nanoscale; 2020 Feb; 12(5):3469-3481. PubMed ID: 31990278
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A carbon-promoted galvanic replacement method to synthesize efficient PdNi nanoalloy catalyst.
    Guo Z; Liu W; He Z; Wang Z; Li W; Zhang M
    J Colloid Interface Sci; 2024 Jun; 663():369-378. PubMed ID: 38412722
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multifunctional Au-Fe3O4@MOF core-shell nanocomposite catalysts with controllable reactivity and magnetic recyclability.
    Ke F; Wang L; Zhu J
    Nanoscale; 2015 Jan; 7(3):1201-8. PubMed ID: 25486865
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Polymer-supported CuPd nanoalloy as a synergistic catalyst for electrocatalytic reduction of carbon dioxide to methane.
    Zhang S; Kang P; Bakir M; Lapides AM; Dares CJ; Meyer TJ
    Proc Natl Acad Sci U S A; 2015 Dec; 112(52):15809-14. PubMed ID: 26668386
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Size-controllable synthesis of trimetallic RhPdPt island-shaped nanoalloys with enhanced electrocatalytic performance for ethanol oxidation in alkaline medium.
    Huang DB; He PL; Yuan Q; Wang X
    Chem Asian J; 2015 Mar; 10(3):608-13. PubMed ID: 25620545
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.