BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 3145781)

  • 1. Tetanus toxin binding to mouse spinal cord cells: an evaluation of the role of gangliosides in toxin internalization.
    Parton RG; Ockleford CD; Critchley DR
    Brain Res; 1988 Dec; 475(1):118-27. PubMed ID: 3145781
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A study of the mechanism of internalisation of tetanus toxin by primary mouse spinal cord cultures.
    Parton RG; Ockleford CD; Critchley DR
    J Neurochem; 1987 Oct; 49(4):1057-68. PubMed ID: 3114428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fate of tetanus toxin bound to the surface of primary neurons in culture: evidence for rapid internalization.
    Critchley DR; Nelson PG; Habig WH; Fishman PH
    J Cell Biol; 1985 May; 100(5):1499-507. PubMed ID: 3988797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the binding and internalization of tetanus toxin in a neuroblastoma hybrid cell line.
    Staub GC; Walton KM; Schnaar RL; Nichols T; Baichwal R; Sandberg K; Rogers TB
    J Neurosci; 1986 May; 6(5):1443-51. PubMed ID: 3711989
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gangliosides mediate association of tetanus toxin with neural cells in culture.
    Yavin E
    Arch Biochem Biophys; 1984 Apr; 230(1):129-37. PubMed ID: 6712226
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Botulinum A neurotoxin unlike tetanus toxin acts via a neuraminidase sensitive structure.
    Bigalke H; Müller H; Dreyer F
    Toxicon; 1986; 24(11-12):1065-74. PubMed ID: 3564058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tetanus toxin association with developing neuronal cell cultures. Kinetic parameters and evidence for ganglioside-mediated internalization.
    Yavin E; Yavin Z; Habig WH; Hardegree MC; Kohn LD
    J Biol Chem; 1981 Jul; 256(13):7014-22. PubMed ID: 7240260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complex ganglioside expression and tetanus toxin binding by PC12 pheochromocytoma cells.
    Walton KM; Sandberg K; Rogers TB; Schnaar RL
    J Biol Chem; 1988 Feb; 263(4):2055-63. PubMed ID: 3339002
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Binding of tetanus toxin to somatic neural hybrid cells with varying ganglioside composition.
    Yavin E; Habig WH
    J Neurochem; 1984 May; 42(5):1313-20. PubMed ID: 6707636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature-mediated interaction of tetanus toxin with cerebral neuron cultures: characterization of a neuraminidase-insensitive toxin-receptor complex.
    Yavin E; Yavin Z; Kohn LD
    J Neurochem; 1983 May; 40(5):1212-9. PubMed ID: 6834057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuronal binding of tetanus toxin compared to its ganglioside binding fragment (H(c)).
    Fishman PS; Parks DA; Patwardhan AJ; Matthews CC
    Nat Toxins; 1999; 7(4):151-6. PubMed ID: 10797643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuronal sensitivity to tetanus toxin requires gangliosides.
    Williamson LC; Bateman KE; Clifford JC; Neale EA
    J Biol Chem; 1999 Aug; 274(35):25173-80. PubMed ID: 10455200
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tyrosine-1290 of tetanus neurotoxin plays a key role in its binding to gangliosides and functional binding to neurones.
    Sutton JM; Chow-Worn O; Spaven L; Silman NJ; Hallis B; Shone CC
    FEBS Lett; 2001 Mar; 493(1):45-9. PubMed ID: 11278003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tetanus toxin interaction with human erythrocytes. I. Properties of polysialoganglioside association with the cell surface.
    Lazarovici P; Yavin E
    Biochim Biophys Acta; 1985 Jan; 812(2):523-31. PubMed ID: 3967024
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of tetanus toxin binding to rat brain membranes. Evidence for a high-affinity proteinase-sensitive receptor.
    Pierce EJ; Davison MD; Parton RG; Habig WH; Critchley DR
    Biochem J; 1986 Jun; 236(3):845-52. PubMed ID: 3539106
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tetanus toxin is internalized by a sequential clathrin-dependent mechanism initiated within lipid microdomains and independent of epsin1.
    Deinhardt K; Berninghausen O; Willison HJ; Hopkins CR; Schiavo G
    J Cell Biol; 2006 Jul; 174(3):459-71. PubMed ID: 16880274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tetanus toxin interaction with human erythrocytes. II. Kinetic properties of toxin association and evidence for a ganglioside-toxin macromolecular complex formation.
    Lazarovici P; Yavin E
    Biochim Biophys Acta; 1985 Jan; 812(2):532-42. PubMed ID: 3967025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuronal acquisition of tetanus toxin binding sites: relationship with the last mitotic cycle.
    Koulakoff A; Bizzini B; Berwald-Netter Y
    Dev Biol; 1983 Dec; 100(2):350-7. PubMed ID: 6653877
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative comparison between tetanus toxin, some fragments and toxoid for binding and axonal transport in the rat.
    Weller U; Taylor CF; Habermann E
    Toxicon; 1986; 24(11-12):1055-63. PubMed ID: 2436356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of the binding characteristics of two different preparations of tetanus toxin to rat brain membranes.
    Parton RG; Davison MD; Critchley DR
    Toxicon; 1989; 27(1):127-35. PubMed ID: 2711411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.