These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Gas chromatography study of reagent degradation during chemical vapor deposition of carbon nanotubes. Musso S; Zanetti M; Giorcelli M; Tagliaferro A; Costa L J Nanosci Nanotechnol; 2009 Jun; 9(6):3593-8. PubMed ID: 19504887 [TBL] [Abstract][Full Text] [Related]
3. Growth of metal-free carbon nanotubes on glass substrate with an amorphous carbon catalyst layer. Seo JK; Choi WS; Kim HD; Lee JH; Choi EC; Kim HJ; Hong B J Nanosci Nanotechnol; 2011 Dec; 11(12):11032-6. PubMed ID: 22409050 [TBL] [Abstract][Full Text] [Related]
4. Carbon nanotubes synthesis over coal ash based catalysts using polypropylene waste via CVD process: Influence of catalyst and reaction temperature. Chitriv SP; Saini V; Ratna D; P VR J Environ Manage; 2024 Aug; 366():121881. PubMed ID: 39018861 [TBL] [Abstract][Full Text] [Related]
5. Chemical Vapor Deposition-Grown Nickel-Encapsulated N-Doped Carbon Nanotubes as a Highly Active Oxygen Reduction Reaction Catalyst without Direct Metal-Nitrogen Coordination. Ganguly D; Sundara R; Ramanujam K ACS Omega; 2018 Oct; 3(10):13609-13620. PubMed ID: 31458066 [TBL] [Abstract][Full Text] [Related]
6. The evolution of carbon nanotubes during their growth by plasma enhanced chemical vapor deposition. Wang H; Ren ZF Nanotechnology; 2011 Oct; 22(40):405601. PubMed ID: 21911923 [TBL] [Abstract][Full Text] [Related]
7. Controlling the size and the activity of Fe particles for synthesis of carbon nanotubes. Chee SW; Sharma R Micron; 2012 Nov; 43(11):1181-7. PubMed ID: 22349468 [TBL] [Abstract][Full Text] [Related]
8. Carbon Nanotube-Quicklime Nanocomposites Prepared Using a Nickel Catalyst Supported on Calcium Oxide Derived from Carbonate Stones. Ibrahim R; Hussein MZ; Yusof NA; Abu Bakar F Nanomaterials (Basel); 2019 Aug; 9(9):. PubMed ID: 31480466 [TBL] [Abstract][Full Text] [Related]
9. TEM investigation on the growth mechanism of carbon nanotubes synthesized by hot-filament chemical vapor deposition. Chen X; Wang R; Xu J; Yu D Micron; 2004; 35(6):455-60. PubMed ID: 15120130 [TBL] [Abstract][Full Text] [Related]
10. Low temperature multi-catalytic growth and growth mechanism of carbon nanotubes on carbon fiber surfaces. Yao Z; Xia A; Wang D; Wang C Nanotechnology; 2023 Oct; 35(1):. PubMed ID: 37783207 [TBL] [Abstract][Full Text] [Related]
11. Effects of Catalyst Pretreatment on Carbon Nanotube Synthesis from Methane Using Thin Stainless-Steel Foil as Catalyst by Chemical Vapor Deposition Method. Huynh TM; Nguyen S; Nguyen NTK; Nguyen HM; Do NUP; Nguyen DC; Nguyen LH; Nguyen CV Nanomaterials (Basel); 2020 Dec; 11(1):. PubMed ID: 33379133 [TBL] [Abstract][Full Text] [Related]
12. En route to controlled catalytic CVD synthesis of densely packed and vertically aligned nitrogen-doped carbon nanotube arrays. Boncel S; Pattinson SW; Geiser V; Shaffer MS; Koziol KK Beilstein J Nanotechnol; 2014; 5():219-33. PubMed ID: 24605289 [TBL] [Abstract][Full Text] [Related]
13. Synthesis of carbon nanotubes and nanofibers by thermal CVD on SiO2 and Al2O3 support layers. Aguiar MR; Verissimo C; Ramos AC; Moshkalev SA; Swart JW J Nanosci Nanotechnol; 2009 Jul; 9(7):4143-50. PubMed ID: 19916421 [TBL] [Abstract][Full Text] [Related]
14. Growth of CNTs on Fe-Si catalyst prepared on Si and Al coated Si substrates. Teng FY; Ting JM; Sharma SP; Liao KH Nanotechnology; 2008 Mar; 19(9):095607. PubMed ID: 21817682 [TBL] [Abstract][Full Text] [Related]
15. Enhanced Surface Energetics of CNT-Grafted Carbon Fibers for Superior Electrical and Mechanical Properties in CFRPs. Badakhsh A; An KH; Kim BJ Polymers (Basel); 2020 Jun; 12(6):. PubMed ID: 32604903 [TBL] [Abstract][Full Text] [Related]
16. Growth and characterization of bamboo-shaped carbon nanotubes using nanocluster-assembled ZnO:Co thin films as catalyst. Zhao ZW; Lei W; Zhang XB; Tay BK; Chen JS J Nanosci Nanotechnol; 2012 Aug; 12(8):6583-7. PubMed ID: 22962791 [TBL] [Abstract][Full Text] [Related]
17. Formation of Thermally Stable, High-Areal-Density, and Small-Diameter Catalyst Nanoparticles via Intermittent Sputtering Deposition for the High-Density Growth of Carbon Nanotubes. Koji H; Kusumoto Y; Hatta A; Furuta H Nanomaterials (Basel); 2022 Jan; 12(3):. PubMed ID: 35159710 [TBL] [Abstract][Full Text] [Related]
18. Synthesis of Vertically-Aligned Carbon Nanotubes from Langmuir-Blodgett Films Deposited Fe Nanoparticles on Al2O3/Al/SiO2/Si Substrate. Takagiwa S; Kanasugi O; Nakamura K; Kushida M J Nanosci Nanotechnol; 2016 Apr; 16(4):3289-94. PubMed ID: 27451619 [TBL] [Abstract][Full Text] [Related]
19. Study on the controllable scale-up growth of vertically-aligned carbon nanotube arrays. Ge L; Chen J; Chen J; Zhu Z; Rudolph V J Nanosci Nanotechnol; 2012 Mar; 12(3):2722-32. PubMed ID: 22755115 [TBL] [Abstract][Full Text] [Related]
20. Influencing factors and growth kinetics analysis of carbon nanotube growth on the surface of continuous fibers. Qin J; Wang C; Yao Z; Ma Z; Cui X; Gao Q; Wang Y; Wang Q; Wei H Nanotechnology; 2021 Apr; 32(28):. PubMed ID: 33823501 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]