BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 31457988)

  • 1. Enhanced Enantioselectivity in the Fluorescent Recognition of a Chiral Diamine by Using a Bisbinaphthyl Dialdehyde.
    Zeng C; Zhang X; Pu L
    ACS Omega; 2018 Oct; 3(10):12545-12548. PubMed ID: 31457988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enantioselective fluorescent recognition of chiral acids by cyclohexane-1,2-diamine-based bisbinaphthyl molecules.
    Li ZB; Lin J; Sabat M; Hyacinth M; Pu L
    J Org Chem; 2007 Jun; 72(13):4905-16. PubMed ID: 17530897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Free Amino Acid Recognition: A Bisbinaphthyl-Based Fluorescent Probe with High Enantioselectivity.
    Zhu YY; Wu XD; Gu SX; Pu L
    J Am Chem Soc; 2019 Jan; 141(1):175-181. PubMed ID: 30525565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous Determination of Concentration and Enantiomeric Composition in Fluorescent Sensing.
    Pu L
    Acc Chem Res; 2017 Apr; 50(4):1032-1040. PubMed ID: 28287702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Macrocyclic bisbinaphthyl fluorophores and their acyclic analogues: signal amplification and chiral recognition.
    Li ZB; Lin J; Zhang HC; Sabat M; Hyacinth M; Pu L
    J Org Chem; 2004 Sep; 69(19):6284-93. PubMed ID: 15357587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enantioselective fluorescent sensors: a tale of BINOL.
    Pu L
    Acc Chem Res; 2012 Feb; 45(2):150-63. PubMed ID: 21834528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Greatly Enhanced Fluorescence by Increasing the Structural Rigidity of an Imine: Enantioselective Recognition of 1,2-Cyclohexanediamine by a Chiral Aldehyde.
    Xu Y; Yu S; Chen Q; Chen X; Xiao M; Chen L; Yu X; Xu Y; Pu L
    Chemistry; 2016 Apr; 22(17):5963-8. PubMed ID: 26991951
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regio- and Enantioselective Macrocyclization from Dynamic Imine Formation: Chemo- and Enantioselective Fluorescent Recognition of Lysine.
    Mao Y; Davis S; Pu L
    Org Lett; 2023 Oct; 25(42):7639-7644. PubMed ID: 37843813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rational design of a fluorescent sensor to simultaneously determine both the enantiomeric composition and the concentration of chiral functional amines.
    Wen K; Yu S; Huang Z; Chen L; Xiao M; Yu X; Pu L
    J Am Chem Soc; 2015 Apr; 137(13):4517-24. PubMed ID: 25790271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Highly Fluorinated Chiral Aldehyde for Enantioselective Fluorescent Recognition in a Biphasic System.
    Wang C; Wu X; Pu L
    Chemistry; 2017 Aug; 23(45):10749-10752. PubMed ID: 28675621
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bisbinaphthyl macrocycle-based highly enantioselective fluorescent sensors for alpha-hydroxycarboxylic acids.
    Lin J; Zhang HC; Pu L
    Org Lett; 2002 Sep; 4(19):3297-300. PubMed ID: 12227773
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conjugated polymer-enhanced enantioselectivity in fluorescent sensing.
    Zhang X; Wang C; Wang P; Du J; Zhang G; Pu L
    Chem Sci; 2016 Jun; 7(6):3614-3620. PubMed ID: 29997853
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of a Dimeric BINOL-Imine-Zn(II) Complex and Its Role in Enantioselective Fluorescent Recognition.
    Guo K; Wang P; Tan W; Li Y; Gao X; Wang Q; Pu L
    Inorg Chem; 2020 Dec; 59(24):17992-17998. PubMed ID: 33136378
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enantioselective fluorescent recognition in the fluorous phase: enhanced reactivity and expanded chiral recognition.
    Wang C; Wu E; Wu X; Xu X; Zhang G; Pu L
    J Am Chem Soc; 2015 Mar; 137(11):3747-50. PubMed ID: 25761050
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biphasic Enantioselective Fluorescent Recognition of Amino Acids by a Fluorophilic Probe.
    Zhu YY; Wu XD; Abed M; Gu SX; Pu L
    Chemistry; 2019 Jun; 25(33):7866-7873. PubMed ID: 30893491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A practical enantioselective fluorescent sensor for mandelic acid.
    Lin J; Hu QS; Xu MH; Pu L
    J Am Chem Soc; 2002 Mar; 124(10):2088-9. PubMed ID: 11878942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous Determination of Concentration and Enantiomeric Composition of Amino Acids in Aqueous Solution by Using a Tetrabromobinaphthyl Dialdehyde Probe.
    Iqbal S; Yu S; Jiang L; Wang X; Chen Y; Wang Y; Yu X; Pu L
    Chemistry; 2019 Jul; 25(42):9967-9972. PubMed ID: 31056773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Opposite Enantioselectivity of Mg(II) Versus Zn(II) in the Fluorescent Recognition of Amino Acids.
    Xinjing W; Jiang Y; Chen Y; Yu S; Shi D; Zhao F; Chen Y; Wang Y; Huo B; Yu X; Pu L
    J Org Chem; 2020 Apr; 85(7):4901-4905. PubMed ID: 32148044
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A convenient fluorescent method to simultaneously determine the enantiomeric composition and concentration of functional chiral amines.
    Huang Z; Yu S; Zhao X; Wen K; Xu Y; Yu X; Xu Y; Pu L
    Chemistry; 2014 Dec; 20(50):16458-61. PubMed ID: 25348091
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enantioselective fluorescent recognition of mandelic acid by unsymmetrical salalen and salan sensors.
    Yang X; Liu X; Shen K; Fu Y; Zhang M; Zhu C; Cheng Y
    Org Biomol Chem; 2011 Sep; 9(17):6011-21. PubMed ID: 21743928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.