BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 31458016)

  • 1. Coronene-Based Graphene Nanoribbons Insulated by Boron Nitride Nanotubes: Electronic Properties of the Hybrid Structure.
    Gracia-Espino E; Barzegar HR; Zettl A
    ACS Omega; 2018 Oct; 3(10):12930-12935. PubMed ID: 31458016
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Size, structure, and helical twist of graphene nanoribbons controlled by confinement in carbon nanotubes.
    Chamberlain TW; Biskupek J; Rance GA; Chuvilin A; Alexander TJ; Bichoutskaia E; Kaiser U; Khlobystov AN
    ACS Nano; 2012 May; 6(5):3943-53. PubMed ID: 22483078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature-controlled colossal magnetoresistance and perfect spin Seebeck effect in hybrid graphene/boron nitride nanoribbons.
    Zhu L; Li R; Yao K
    Phys Chem Chem Phys; 2017 Feb; 19(5):4085-4092. PubMed ID: 28111668
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of substitutional defects on resonant tunneling diodes based on armchair graphene and boron nitride nanoribbons lateral heterojunctions.
    Sanaeepur M
    Beilstein J Nanotechnol; 2020; 11():688-694. PubMed ID: 32395399
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energetics and electronic structure of encapsulated graphene nanoribbons in carbon nanotube.
    Mandal B; Sarkar S; Sarkar P
    J Phys Chem A; 2013 Sep; 117(36):8568-75. PubMed ID: 23675973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of graphene nanoribbons encapsulated in single-walled carbon nanotubes.
    Talyzin AV; Anoshkin IV; Krasheninnikov AV; Nieminen RM; Nasibulin AG; Jiang H; Kauppinen EI
    Nano Lett; 2011 Oct; 11(10):4352-6. PubMed ID: 21875092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Longitudinal splitting of boron nitride nanotubes for the facile synthesis of high quality boron nitride nanoribbons.
    Erickson KJ; Gibb AL; Sinitskii A; Rousseas M; Alem N; Tour JM; Zettl AK
    Nano Lett; 2011 Aug; 11(8):3221-6. PubMed ID: 21608991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accurate prediction of the electronic properties of low-dimensional graphene derivatives using a screened hybrid density functional.
    Barone V; Hod O; Peralta JE; Scuseria GE
    Acc Chem Res; 2011 Apr; 44(4):269-79. PubMed ID: 21388164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactions and chemical transformations of coronene inside and outside carbon nanotubes.
    Botka B; Füstös ME; Tóháti HM; Németh K; Klupp G; Szekrényes Z; Kocsis D; Utczás M; Székely E; Váczi T; Tarczay G; Hackl R; Chamberlain TW; Khlobystov AN; Kamarás K
    Small; 2014 Apr; 10(7):1369-78. PubMed ID: 24167020
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coronene encapsulation in single-walled carbon nanotubes: stacked columns, peapods, and nanoribbons.
    Anoshkin IV; Talyzin AV; Nasibulin AG; Krasheninnikov AV; Jiang H; Nieminen RM; Kauppinen EI
    Chemphyschem; 2014 Jun; 15(8):1660-5. PubMed ID: 24729536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uncoiling of helical boron nitride-graphene nanoribbons in a single-walled carbon nanotube.
    Li Y; Zhou Y; Zhou X; Wang L; Li H
    Phys Chem Chem Phys; 2017 Jan; 19(3):2095-2103. PubMed ID: 28045156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth of carbon nanotubes via twisted graphene nanoribbons.
    Lim HE; Miyata Y; Kitaura R; Nishimura Y; Nishimoto Y; Irle S; Warner JH; Kataura H; Shinohara H
    Nat Commun; 2013; 4():2548. PubMed ID: 24091379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Band gap modification and photoluminescence enhancement of graphene nanoribbon filled single-walled carbon nanotubes.
    Chernov AI; Fedotov PV; Lim HE; Miyata Y; Liu Z; Sato K; Suenaga K; Shinohara H; Obraztsova ED
    Nanoscale; 2018 Feb; 10(6):2936-2943. PubMed ID: 29369315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unravelling the Complete Raman Response of Graphene Nanoribbons Discerning the Signature of Edge Passivation.
    Milotti V; Berkmann C; Laranjeira J; Cui W; Cao K; Zhang Y; Kaiser U; Yanagi K; Melle-Franco M; Shi L; Pichler T; Ayala P
    Small Methods; 2022 Aug; 6(8):e2200110. PubMed ID: 35733057
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atomically precise bottom-up fabrication of graphene nanoribbons.
    Cai J; Ruffieux P; Jaafar R; Bieri M; Braun T; Blankenburg S; Muoth M; Seitsonen AP; Saleh M; Feng X; Müllen K; Fasel R
    Nature; 2010 Jul; 466(7305):470-3. PubMed ID: 20651687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tuning electronic properties of boron phosphide nanoribbons by edge passivation and deformation.
    Dai X; Zhang L; Jiang Y; Li H
    Phys Chem Chem Phys; 2019 Jul; 21(28):15392-15399. PubMed ID: 31276127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contacting individual graphene nanoribbons using carbon nanotube electrodes.
    Zhang J; Qian L; Barin GB; Daaoub AHS; Chen P; Müllen K; Sangtarash S; Ruffieux P; Fasel R; Sadeghi H; Zhang J; Calame M; Perrin ML
    Nat Electron; 2023; 6(8):572-581. PubMed ID: 37636241
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of N/B doping on the electronic and field emission properties for carbon nanotubes, carbon nanocones, and graphene nanoribbons.
    Yu SS; Zheng WT
    Nanoscale; 2010 Jul; 2(7):1069-82. PubMed ID: 20648331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electronic structures and transport properties of fluorinated boron nitride nanoribbons.
    Zeng J; Chen KQ; Sun CQ
    Phys Chem Chem Phys; 2012 Jun; 14(22):8032-7. PubMed ID: 22555657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-yield synthesis of boron nitride nanoribbons via longitudinal splitting of boron nitride nanotubes by potassium vapor.
    Sinitskii A; Erickson KJ; Lu W; Gibb AL; Zhi C; Bando Y; Golberg D; Zettl A; Tour JM
    ACS Nano; 2014 Oct; 8(10):9867-73. PubMed ID: 25227319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.