These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 31458156)

  • 41. Visible-Light Photocatalytic Ozonation Using Graphitic C
    Xiao J; Xie Y; Rabeah J; Brückner A; Cao H
    Acc Chem Res; 2020 May; 53(5):1024-1033. PubMed ID: 32159322
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Conversion of cellulose into valuable chemicals using sulfonated amorphous carbon in 1-ethyl-3-methylimidazolium chloride.
    Nguyen TT; Phan HB; Nguyen TH; Tran KN; Nguyen LHT; Doan TLH; Tran PH
    RSC Adv; 2023 Mar; 13(11):7257-7266. PubMed ID: 36891489
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Improving O2 production of WO3 photoanodes with IrO2 in acidic aqueous electrolyte.
    Spurgeon JM; Velazquez JM; McDowell MT
    Phys Chem Chem Phys; 2014 Feb; 16(8):3623-31. PubMed ID: 24435160
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Influence of the addition of vanadium to Pt/TiO
    Kim GJ; Kwon DW; Shin JH; Kim KW; Hong SC
    Environ Technol; 2019 Aug; 40(19):2588-2600. PubMed ID: 30513069
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Conversion of cellulose and cellobiose into sorbitol catalyzed by ruthenium supported on a polyoxometalate/metal-organic framework hybrid.
    Chen J; Wang S; Huang J; Chen L; Ma L; Huang X
    ChemSusChem; 2013 Aug; 6(8):1545-55. PubMed ID: 23619979
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Damaged starch derived carbon foam-supported heteropolyacid for catalytic conversion of cellulose: Improved catalytic performance and efficient reusability.
    Zhang Y; Zhao M; Wang H; Hu H; Liu R; Huang Z; Chen C; Chen D; Feng Z
    Bioresour Technol; 2019 Sep; 288():121532. PubMed ID: 31146077
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Sulfate formation catalyzed by coal fly ash, mineral dust and iron(iii) oxide: variable influence of temperature and light.
    Gankanda A; Coddens EM; Zhang Y; Cwiertny DM; Grassian VH
    Environ Sci Process Impacts; 2016 Dec; 18(12):1484-1491. PubMed ID: 27796391
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Selective Oxidation of H
    Isegawa M; Matsumoto T; Ogo S
    Inorg Chem; 2020 Jan; 59(2):1014-1028. PubMed ID: 31898897
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Air Oxidation of Activated Carbon to Synthesize a Biomimetic Catalyst for Hydrolysis of Cellulose.
    Shrotri A; Kobayashi H; Fukuoka A
    ChemSusChem; 2016 Jun; 9(11):1299-303. PubMed ID: 27115288
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Eco-Friendly Ca-Montmorillonite Grafted by Non-Acidic Ionic Liquid Used as A Solid Acid Catalyst in Cellulose Hydrolysis to Reducing Sugars.
    Zhou Y; Yang M; Tong D; Yang H; Fang K
    Molecules; 2019 May; 24(9):. PubMed ID: 31086032
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Fractionation of lignocellulosic biopolymers from sugarcane bagasse using formic acid-catalyzed organosolv process.
    Suriyachai N; Champreda V; Kraikul N; Techanan W; Laosiripojana N
    3 Biotech; 2018 May; 8(5):221. PubMed ID: 29682440
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Oxygen Reduction Reaction on Graphene in an Electro-Fenton System: In Situ Generation of H2 O2 for the Oxidation of Organic Compounds.
    Chen CY; Tang C; Wang HF; Chen CM; Zhang X; Huang X; Zhang Q
    ChemSusChem; 2016 May; 9(10):1194-9. PubMed ID: 27098063
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mechanochemical-assisted hydrolysis of pretreated rice straw into glucose and xylose in water by weakly acidic solid catalyst.
    Qi X; Yan L; Shen F; Qiu M
    Bioresour Technol; 2019 Feb; 273():687-691. PubMed ID: 30448067
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Catalytic air oxidation of biomass-derived carbohydrates to formic acid.
    Li J; Ding DJ; Deng L; Guo QX; Fu Y
    ChemSusChem; 2012 Jul; 5(7):1313-8. PubMed ID: 22499553
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A Mononuclear Nonheme Iron(III)-Peroxo Complex Binding Redox-Inactive Metal Ions.
    Lee YM; Bang S; Kim YM; Cho J; Hong S; Nomura T; Ogura T; Troeppner O; Ivanović-Burmazović I; Sarangi R; Fukuzumi S; Nam W
    Chem Sci; 2013 Jul; 4():3917-3923. PubMed ID: 25426288
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Synthesis, characterization, reactivity and catalytic activity of oxidovanadium(IV), oxidovanadium(V) and dioxidovanadium(V) complexes of benzimidazole modified ligands.
    Maurya MR; Bisht M; Kumar A; Kuznetsov ML; Avecilla F; Pessoa JC
    Dalton Trans; 2011 Jul; 40(26):6968-83. PubMed ID: 21647507
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Kinetics of the light-driven aqueous autoxidation of sulfur(IV) in the absence and presence of iron(II).
    Kerezsi I; Lente G; Fábián I
    Dalton Trans; 2006 Feb; (7):955-60. PubMed ID: 16462956
    [TBL] [Abstract][Full Text] [Related]  

  • 58. One-pot synthesis of formic acid
    Gromov NV; Medvedeva TB; Rodikova YA; Babushkin DE; Panchenko VN; Timofeeva MN; Zhizhina EG; Taran OP; Parmon VN
    RSC Adv; 2020 Aug; 10(48):28856-28864. PubMed ID: 35520050
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Iron-catalyzed hydrogen production from formic acid.
    Boddien A; Loges B; Gärtner F; Torborg C; Fumino K; Junge H; Ludwig R; Beller M
    J Am Chem Soc; 2010 Jul; 132(26):8924-34. PubMed ID: 20550131
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Gold-Catalyzed Reductive Transformation of Nitro Compounds Using Formic Acid: Mild, Efficient, and Versatile.
    Yu L; Zhang Q; Li SS; Huang J; Liu YM; He HY; Cao Y
    ChemSusChem; 2015 Sep; 8(18):3029-35. PubMed ID: 26224033
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.