These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 31458185)

  • 41. Calcium Looping: On the Positive Influence of SO
    Homsy SL; Moreno J; Dikhtiarenko A; Gascon J; Dibble RW
    ACS Omega; 2020 Dec; 5(50):32318-32333. PubMed ID: 33376868
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Thermal decomposition of dolomite under CO2: insights from TGA and in situ XRD analysis.
    Valverde JM; Perejon A; Medina S; Perez-Maqueda LA
    Phys Chem Chem Phys; 2015 Nov; 17(44):30162-76. PubMed ID: 26506285
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Optimization of the structural characteristics of CaO and its effective stabilization yield high-capacity CO
    Naeem MA; Armutlulu A; Imtiaz Q; Donat F; Schäublin R; Kierzkowska A; Müller CR
    Nat Commun; 2018 Jun; 9(1):2408. PubMed ID: 29921929
    [TBL] [Abstract][Full Text] [Related]  

  • 44. In situ studies of materials for high temperature CO
    Dunstan MT; Maugeri SA; Liu W; Tucker MG; Taiwo OO; Gonzalez B; Allan PK; Gaultois MW; Shearing PR; Keen DA; Phillips AE; Dove MT; Scott SA; Dennis JS; Grey CP
    Faraday Discuss; 2016 Oct; 192():217-240. PubMed ID: 27472014
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Thermal Integration of a Flexible Calcium Looping CO
    Arias B; Criado YA; Abanades JC
    ACS Omega; 2020 Mar; 5(10):4844-4852. PubMed ID: 32201770
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Advanced High-Temperature CO
    Nityashree N; Manohara GV; Maroto-Valer MM; Garcia S
    ACS Appl Mater Interfaces; 2020 Jul; 12(30):33765-33774. PubMed ID: 32609484
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Development of a Steel-Slag-Based, Iron-Functionalized Sorbent for an Autothermal Carbon Dioxide Capture Process.
    Tian S; Jiang J; Hosseini D; Kierzkowska AM; Imtiaz Q; Broda M; Müller CR
    ChemSusChem; 2015 Nov; 8(22):3839-46. PubMed ID: 26616682
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Operation of a 25 KWth Calcium Looping Pilot-plant with High Oxygen Concentrations in the Calciner.
    Erans M; Jeremias M; Manovic V; Anthony EJ
    J Vis Exp; 2017 Oct; (128):. PubMed ID: 29155774
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Influence of the operation conditions on CO2 capture by CaO-derived sorbents prepared from synthetic CaCO3.
    Nieto-Sanchez AJ; Olivares-Marin M; Garcia S; Pevida C; Cuerda-Correa EM
    Chemosphere; 2013 Nov; 93(9):2148-58. PubMed ID: 24035693
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Solution combustion synthesis of MgO-stabilized CaO sorbents using polyethylene glycol as fuel and dispersant.
    Sun R; Shen H; Lv X; Wang Y; Hu T
    RSC Adv; 2024 Jan; 14(3):1741-1749. PubMed ID: 38192307
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Laboratory study on the high-temperature capture of HCl gas by dry-injection of calcium-based sorbents.
    Shemwell B; Levendis YA; Simons GA
    Chemosphere; 2001; 42(5-7):785-96. PubMed ID: 11219704
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Yolk-shell-type CaO-based sorbents for CO
    Krödel M; Oing A; Negele J; Landuyt A; Kierzkowska A; Bork AH; Donat F; Müller CR
    Nanoscale; 2022 Nov; 14(45):16816-16828. PubMed ID: 36250268
    [TBL] [Abstract][Full Text] [Related]  

  • 53. CaO-based sorbent derived from lime mud and bauxite tailings for cyclic CO
    Zhang Y; He L; Ma A; Jia Q; He S; Shan S
    Environ Sci Pollut Res Int; 2018 Oct; 25(28):28015-28024. PubMed ID: 30066075
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A Kinetic Study of the Pozzolanic Reaction of Fly Ash, CaO, and Na
    Gong Y; Yu B; Fang Y; Yang D; Wu SA; Yan Y
    Materials (Basel); 2019 Oct; 12(20):. PubMed ID: 31614521
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Assessing the environmental sustainability of an emerging energy technology: Solar thermal calcination for cement production.
    Tomatis M; Jeswani HK; Stamford L; Azapagic A
    Sci Total Environ; 2020 Nov; 742():140510. PubMed ID: 32634690
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Process for capturing CO2 arising from the calcination of the CaCO3 used in cement manufacture.
    Rodríguez N; Alonso M; Grasa G; Abanades JC
    Environ Sci Technol; 2008 Sep; 42(18):6980-4. PubMed ID: 18853819
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The development of effective CaO-based CO
    Naeem MA; Armutlulu A; Broda M; Lebedev D; Müller CR
    Faraday Discuss; 2016 Oct; 192():85-95. PubMed ID: 27479522
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mechanistic Understanding of CaO-Based Sorbents for High-Temperature CO
    Krödel M; Landuyt A; Abdala PM; Müller CR
    ChemSusChem; 2020 Dec; 13(23):6259-6272. PubMed ID: 33052036
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Accurate Control of Cage-Like CaO Hollow Microspheres for Enhanced CO
    Chen J; Duan L; Sun Z
    Environ Sci Technol; 2019 Feb; 53(4):2249-2259. PubMed ID: 30657669
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of Steam Injection during Carbonation on the Multicyclic Performance of Limestone (CaCO
    Arcenegui Troya JJ; Moreno V; Sanchez-Jiménez PE; Perejón A; Valverde JM; Pérez-Maqueda LA
    ACS Sustain Chem Eng; 2022 Jan; 10(2):850-859. PubMed ID: 35070518
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.