These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Shaping Up Zn-Doped Magnetite Nanoparticles from Mono- and Bimetallic Oleates: The Impact of Zn Content, Fe Vacancies, and Morphology on Magnetic Hyperthermia Performance. Castellanos-Rubio I; Arriortua O; Marcano L; Rodrigo I; Iglesias-Rojas D; Barón A; Olazagoitia-Garmendia A; Olivi L; Plazaola F; Fdez-Gubieda ML; Castellanos-Rubio A; Garitaonandia JS; Orue I; Insausti M Chem Mater; 2021 May; 33(9):3139-3154. PubMed ID: 34556898 [TBL] [Abstract][Full Text] [Related]
3. Zinc-Containing Magnetic Oxides Stabilized by a Polymer: One Phase or Two? Baird N; Losovyj Y; Yuzik-Klimova EY; Kuchkina NV; Shifrina ZB; Pink M; Stein BD; Morgan DG; Wang T; Rubin MA; Sidorov AI; Sulman EM; Bronstein LM ACS Appl Mater Interfaces; 2016 Jan; 8(1):891-9. PubMed ID: 26673012 [TBL] [Abstract][Full Text] [Related]
4. Improvements in the Organic-Phase Hydrothermal Synthesis of Monodisperse M Etemadi H; Plieger PG ACS Omega; 2020 Jul; 5(29):18091-18104. PubMed ID: 32743183 [TBL] [Abstract][Full Text] [Related]
5. Size control and characterization of wustite (core)/spinel (shell) nanocubes obtained by decomposition of iron oleate complex. Hai HT; Yang HT; Kura H; Hasegawa D; Ogata Y; Takahashi M; Ogawa T J Colloid Interface Sci; 2010 Jun; 346(1):37-42. PubMed ID: 20219207 [TBL] [Abstract][Full Text] [Related]
6. Enhancing the Catalytic Activity of Zn-Containing Magnetic Oxides in a Methanol Synthesis: Identifying the Key Factors. Baird N; Dittmar JW; Losovyj YB; Morgan DG; Stein BD; Pink M; Kuchkina NV; Serkova ES; Lependina OL; Grigoriev ME; Sidorov AI; Sulman MG; Shifrina ZB; Bronstein LM ACS Appl Mater Interfaces; 2017 Jan; 9(3):2285-2294. PubMed ID: 28029247 [TBL] [Abstract][Full Text] [Related]
7. Improved Surface-Enhanced Raman Scattering Properties of ZrO Ji P; Mao Z; Wang Z; Xue X; Zhang Y; Lv J; Shi X Nanomaterials (Basel); 2019 Jul; 9(7):. PubMed ID: 31284623 [TBL] [Abstract][Full Text] [Related]
8. Zn doped iron oxide nanoparticles with high magnetization and photothermal efficiency for cancer treatment. Kasparis G; Sangnier AP; Wang L; Efstathiou C; LaGrow AP; Sergides A; Wilhelm C; Thanh NTK J Mater Chem B; 2023 Jan; 11(4):787-801. PubMed ID: 36472454 [TBL] [Abstract][Full Text] [Related]
9. Understanding the role of iron in the magnetism of Fe doped ZnO nanoparticles. Beltrán JJ; Barrero CA; Punnoose A Phys Chem Chem Phys; 2015 Jun; 17(23):15284-96. PubMed ID: 25994044 [TBL] [Abstract][Full Text] [Related]
10. Tunable electrical and magnetic properties of half-metallic Zn(x)Fe(3-x)O4 from first principles. Cheng YH; Li LY; Wang WH; Liu H; Ren SW; Cui XY; Zheng RK Phys Chem Chem Phys; 2011 Dec; 13(48):21243-7. PubMed ID: 22025089 [TBL] [Abstract][Full Text] [Related]
11. Multifunctional Modulation of High-Performance Zn Du H; Yang F; Yao C; Zhong Z; Jiang P; Stanciu SG; Peng H; Hu J; Jiang B; Li Z; Lv W; Zheng F; Stenmark HA; Wu A Small; 2022 Oct; 18(42):e2201669. PubMed ID: 36101918 [TBL] [Abstract][Full Text] [Related]
12. 3d Metal Doping of Core@Shell Wüstite@ferrite Nanoparticles as a Promising Route toward Room Temperature Exchange Bias Magnets. Muzzi B; Albino M; Petrecca M; Innocenti C; Fernández CJ; Bertoni G; Marquina C; Ibarra MR; Sangregorio C Small; 2022 Apr; 18(16):e2107426. PubMed ID: 35274450 [TBL] [Abstract][Full Text] [Related]
13. Adsorption of proteins on oral Zn Wang X; Gong J; Tan W; Hu T; Rong R; Gui Z; Nie K; Xu X Nanoscale; 2020 Nov; 12(44):22754-22767. PubMed ID: 33174556 [TBL] [Abstract][Full Text] [Related]
14. CO oxidation activity of Pt, Zn and ZnPt nanocatalysts: a comparative study by in situ near-ambient pressure X-ray photoelectron spectroscopy. Naitabdi A; Boucly A; Rochet F; Fagiewicz R; Olivieri G; Bournel F; Benbalagh R; Sirotti F; Gallet JJ Nanoscale; 2018 Apr; 10(14):6566-6580. PubMed ID: 29577122 [TBL] [Abstract][Full Text] [Related]
15. Controllable preparation of ternary superparamagnetic nanoparticles dual-doped with Mn and Zn elements. Liu KX; Lan F; Jiang W; Zeng XB; Hu H; Wu Y; Gu ZW J Nanosci Nanotechnol; 2012 Nov; 12(11):8437-42. PubMed ID: 23421227 [TBL] [Abstract][Full Text] [Related]
16. Pushing up the magnetisation values for iron oxide nanoparticles via zinc doping: X-ray studies on the particle's sub-nano structure of different synthesis routes. Szczerba W; Żukrowski J; Przybylski M; Sikora M; Safonova O; Shmeliov A; Nicolosi V; Schneider M; Granath T; Oppmann M; Straßer M; Mandel K Phys Chem Chem Phys; 2016 Sep; 18(36):25221-25229. PubMed ID: 27711457 [TBL] [Abstract][Full Text] [Related]
17. Ultrafast Preparation of Monodisperse Fe3 O4 Nanoparticles by Microwave-Assisted Thermal Decomposition. Liang YJ; Zhang Y; Guo Z; Xie J; Bai T; Zou J; Gu N Chemistry; 2016 Aug; 22(33):11807-15. PubMed ID: 27381301 [TBL] [Abstract][Full Text] [Related]
18. A general approach to the synthesis and detailed characterization of magnetic ferrite nanocubes. Xu Y; Sherwood J; Qin Y; Holler RA; Bao Y Nanoscale; 2015 Aug; 7(29):12641-9. PubMed ID: 26148705 [TBL] [Abstract][Full Text] [Related]
19. Nanoparticles by decomposition of long chain iron carboxylates: from spheres to stars and cubes. Bronstein LM; Atkinson JE; Malyutin AG; Kidwai F; Stein BD; Morgan DG; Perry JM; Karty JA Langmuir; 2011 Mar; 27(6):3044-50. PubMed ID: 21294561 [TBL] [Abstract][Full Text] [Related]
20. Zn- and (Mn, Zn)-substituted versus unsubstituted magnetite nanoparticles: structural, magnetic and hyperthermic properties. Jović Orsini N; Milić MM; Torres TE Nanotechnology; 2020 May; 31(22):225707. PubMed ID: 32066121 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]