BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 31458484)

  • 41. Reduced Graphene Oxide-Laminated One-Dimensional TiO
    Makal P; Das D
    ACS Omega; 2021 Feb; 6(6):4362-4373. PubMed ID: 33623847
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Dual Functional Polymer Interlayer for Facilitating Ion Transport and Reducing Charge Recombination in Dye-Sensitized Solar Cells.
    Wang YC; Li SS; Wen CY; Chen LY; Ho KC; Chen CW
    ACS Appl Mater Interfaces; 2016 Dec; 8(49):33666-33672. PubMed ID: 27960364
    [TBL] [Abstract][Full Text] [Related]  

  • 43. CdSe quantum dots and N719-dye decorated hierarchical TiO2 nanorods for the construction of efficient co-sensitized solar cells.
    Subramaniam MR; Kumaresan D
    Chemphyschem; 2015 Aug; 16(12):2543-8. PubMed ID: 26212770
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Enhanced photovoltaic properties in dye sensitized solar cells by surface treatment of SnO2 photoanodes.
    Basu K; Benetti D; Zhao H; Jin L; Vetrone F; Vomiero A; Rosei F
    Sci Rep; 2016 Mar; 6():23312. PubMed ID: 26988622
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Structurally stabilized organosilane-templated thermostable mesoporous titania.
    Amoli V; Tiwari R; Dutta A; Bhaumik A; Sinha AK
    Chemphyschem; 2014 Jan; 15(1):187-94. PubMed ID: 24307405
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Open-Circuit Voltage (
    Borbón S; Lugo S; Pourjafari D; Pineda Aguilar N; Oskam G; López I
    ACS Omega; 2020 May; 5(19):10977-10986. PubMed ID: 32455218
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Improved performance of dye-sensitized solar cells using gallium nitride-titanium dioxide composite photoelectrodes.
    Huang YR; Huang TW; Wang TH; Tsai YC
    J Colloid Interface Sci; 2014 Aug; 428():128-32. PubMed ID: 24910044
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Designing Squaraines to Control Charge Injection and Recombination Processes in NiO-based Dye-Sensitized Solar Cells.
    Langmar O; Saccone D; Amat A; Fantacci S; Viscardi G; Barolo C; Costa RD; Guldi DM
    ChemSusChem; 2017 Jun; 10(11):2385-2393. PubMed ID: 28318143
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A double layered TiO2 photoanode consisting of hierarchical flowers and nanoparticles for high-efficiency dye-sensitized solar cells.
    Wu WQ; Xu YF; Rao HS; Su CY; Kuang DB
    Nanoscale; 2013 May; 5(10):4362-9. PubMed ID: 23571714
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Enhanced photovoltaic properties of dye-sensitized solar cells using three-component CNF/TiO
    Lu D; Li J; Lu G; Qin L; Liu D; Sun P; Liu F; Lu G
    J Colloid Interface Sci; 2019 Apr; 542():168-176. PubMed ID: 30738309
    [TBL] [Abstract][Full Text] [Related]  

  • 51. NiO-decorated mesoporous TiO2 flowers for an improved photovoltaic dye sensitized solar cell.
    Zhi J; Chen A; Cui H; Xie Y; Huang F
    Phys Chem Chem Phys; 2015 Feb; 17(7):5103-8. PubMed ID: 25600889
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Hierarchical structured TiO2 photoanodes for dye-sensitized solar cells.
    Shih YC; Chu AK; Huang WY
    J Nanosci Nanotechnol; 2012 Apr; 12(4):3070-6. PubMed ID: 22849067
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Trap States Comparison of Mesoporous TiO2 Photoanodes with Different Particle Sizes.
    Ma Y; Hu L; Mo L; Xi X; Dai S
    J Nanosci Nanotechnol; 2016 Jun; 16(6):5787-90. PubMed ID: 27427632
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mesoporous carbon-TiO₂ beads with nanotextured surfaces as photoanodes in dye-sensitized solar cells.
    Quan LN; Jang YH; Jang YJ; Kim J; Lee W; Moon JH; Kim DH
    ChemSusChem; 2014 Sep; 7(9):2590-6. PubMed ID: 25098396
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Spectroscopic investigation of photoinduced charge-transfer processes in FTO/TiO2/N719 photoanodes with and without covalent attachment through silane-based linkers.
    Pandit B; Luitel T; Cummins DR; Thapa AK; Druffel T; Zamborini F; Liu J
    J Phys Chem A; 2013 Dec; 117(50):13513-23. PubMed ID: 24131239
    [TBL] [Abstract][Full Text] [Related]  

  • 56. AuNRs attached TiO
    Bagheri N; Hassanzadeh J; Al-Ruqeishi ZB; Manan NSA; Al Lawati HAJ; Abou-Zied OK
    Phys Chem Chem Phys; 2023 Jul; 25(28):19230-19238. PubMed ID: 37431763
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Incorporation of Potassium Water Glass on Photoelectrodes and Its Effects on the Performance of Dye-Sensitized Solar Cells.
    Oh JH; Lee SJ; Kim DH; Sung SJ; Kang CS; Han YS
    J Nanosci Nanotechnol; 2015 Nov; 15(11):8854-8. PubMed ID: 26726606
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A detailed study on the working mechanism of a heteropoly acid modified TiO2 photoanode for efficient dye-sensitized solar cells.
    Jiang Y; Yang Y; Qiang L; Fan R; Li L; Ye T; Na Y; Shi Y; Luan T
    Phys Chem Chem Phys; 2015 Mar; 17(10):6778-85. PubMed ID: 25669421
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Interplay between π-Bridges and Positions of Branched Alkyl Groups of Unsymmetrical D-A-D-π-A Squaraines in Dye-Sensitized Solar Cells: Mode of Dye Anchoring and the Charge Transfer Process at the TiO
    Punitharasu V; Kavungathodi MFM; Nithyanandhan J
    ACS Appl Mater Interfaces; 2017 Sep; 9(38):32698-32712. PubMed ID: 28857539
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Development of type-I/type-II hybrid dye sensitizer with both pyridyl group and catechol unit as anchoring group for type-I/type-II dye-sensitized solar cell.
    Ooyama Y; Furue K; Enoki T; Kanda M; Adachi Y; Ohshita J
    Phys Chem Chem Phys; 2016 Nov; 18(44):30662-30676. PubMed ID: 27790658
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.