These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 31458511)

  • 21. Bandlike Transport in PbS Quantum Dot Superlattices with Quantum Confinement.
    Liu Y; Peard N; Grossman JC
    J Phys Chem Lett; 2019 Jul; 10(13):3756-3762. PubMed ID: 31185712
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Contribution of Ex-Situ and In-Situ X-ray Grazing Incidence Scattering Techniques to the Understanding of Quantum Dot Self-Assembly: A Review.
    Saxena V; Portale G
    Nanomaterials (Basel); 2020 Nov; 10(11):. PubMed ID: 33198138
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In situ study of the formation mechanism of two-dimensional superlattices from PbSe nanocrystals.
    Geuchies JJ; van Overbeek C; Evers WH; Goris B; de Backer A; Gantapara AP; Rabouw FT; Hilhorst J; Peters JL; Konovalov O; Petukhov AV; Dijkstra M; Siebbeles LDA; van Aert S; Bals S; Vanmaekelbergh D
    Nat Mater; 2016 Dec; 15(12):1248-1254. PubMed ID: 27595349
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Size-dependent multiple twinning in nanocrystal superlattices.
    Rupich SM; Shevchenko EV; Bodnarchuk MI; Lee B; Talapin DV
    J Am Chem Soc; 2010 Jan; 132(1):289-96. PubMed ID: 19968283
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Self-assembly of PbTe quantum dots into nanocrystal superlattices and glassy films.
    Urban JJ; Talapin DV; Shevchenko EV; Murray CB
    J Am Chem Soc; 2006 Mar; 128(10):3248-55. PubMed ID: 16522106
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Crack patterns in superlattices made of maghemite nanocrystals.
    Ngo AT; Richardi J; Pileni MP
    Phys Chem Chem Phys; 2013 Jul; 15(26):10666-72. PubMed ID: 23727907
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High-temperature crystallization of nanocrystals into three-dimensional superlattices.
    Wu L; Willis JJ; McKay IS; Diroll BT; Qin J; Cargnello M; Tassone CJ
    Nature; 2017 Aug; 548(7666):197-201. PubMed ID: 28759888
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metal nanocrystal superlattice nucleation and growth.
    Sigman MB; Saunders AE; Korgel BA
    Langmuir; 2004 Feb; 20(3):978-83. PubMed ID: 15773133
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evidence of contact epitaxy in the self-assembly of HgSe nanocrystals formed at a liquid-liquid interface.
    Maiti S; Sanyal MK; Jana MK; Runge B; Murphy BM; Biswas K; Rao CN
    J Phys Condens Matter; 2017 Mar; 29(9):095101. PubMed ID: 27991441
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Correction to "Three-Dimensional Superlattice of PbS Quantum Dots in Flakes".
    Ermakov VA; da Silva Filho JMC; Bonato LG; Mogili NVV; Montoro FE; Iikawa F; Nogueira AF; Cesar CL; Jiménez-Villar E; Marques FC
    ACS Omega; 2018 Mar; 3(3):3571. PubMed ID: 31465029
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Collective topo-epitaxy in the self-assembly of a 3D quantum dot superlattice.
    Abelson A; Qian C; Salk T; Luan Z; Fu K; Zheng JG; Wardini JL; Law M
    Nat Mater; 2020 Jan; 19(1):49-55. PubMed ID: 31611669
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 2D Organic Superlattice Promoted via Combined Action of π-π Stacking and Dipole-Dipole Interaction in Discotic Liquid Crystals.
    Zhang W; Zhang S; Zhang Z; Yang H; Zhang A; Hao X; Wang J; Zhang C; Pu J
    J Phys Chem B; 2017 Aug; 121(31):7519-7525. PubMed ID: 28727460
    [TBL] [Abstract][Full Text] [Related]  

  • 33. DNA based strategy to nanoparticle superlattices.
    Mazid RR; Si KJ; Cheng W
    Methods; 2014 May; 67(2):215-26. PubMed ID: 24508551
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fabrication of PbS QDs/Graphene Heterostructure Photoelectrochemical Cell by Electrochemical Atomic Layer Epitaxy Method.
    Huang A; Li J; Wang Y; Feng S
    J Nanosci Nanotechnol; 2019 Jan; 19(1):235-239. PubMed ID: 30327029
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Irradiation-Dependent Helium Gas Bubble Superlattice in Tungsten.
    Sprouster DJ; Sun C; Zhang Y; Chodankar SN; Gan J; Ecker LE
    Sci Rep; 2019 Feb; 9(1):2277. PubMed ID: 30783166
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Solution Processing and Self-Organization of PbS Quantum Dots Passivated with Formamidinium Lead Iodide (FAPbI
    Aynehband S; Mohammadi M; Thorwarth K; Hany R; Nüesch FA; Rossell MD; Pauer R; Nunzi JM; Simchi A
    ACS Omega; 2020 Jun; 5(25):15746-15754. PubMed ID: 32637850
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Control of Electronic Structures and Phonon Dynamics in Quantum Dot Superlattices by Manipulation of Interior Nanospace.
    Chang IY; Kim D; Hyeon-Deuk K
    ACS Appl Mater Interfaces; 2016 Jul; 8(28):18321-7. PubMed ID: 27385641
    [TBL] [Abstract][Full Text] [Related]  

  • 38. On the Formation of Honeycomb Superlattices from PbSe Quantum Dots: The Role of Solvent-Mediated Repulsion and Facet-to-Facet Attraction in NC Self-Assembly and Alignment.
    van der Sluijs MM; Sanders D; Jansen KJ; Soligno G; Vanmaekelbergh D; Peters JL
    J Phys Chem C Nanomater Interfaces; 2022 Jan; 126(2):986-996. PubMed ID: 35087608
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhance Efficiency of Solar Cell Using Luminescence PbS Quantum Dots Concentrators.
    Reda SM
    J Fluoresc; 2015 May; 25(3):631-9. PubMed ID: 25740343
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of crystal shape on the energy levels of zero-dimensional PbS quantum dots.
    Hens Z; Vanmaekelbergh D; Stoffels EJ; Van Kempen H
    Phys Rev Lett; 2002 Jun; 88(23):236803. PubMed ID: 12059388
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.