BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 31458565)

  • 21. Gd
    Liu C; Liu J; Xu X; Xiang S; Wang S
    J Biomol NMR; 2017 Jul; 68(3):203-214. PubMed ID: 28560567
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Paramagnetic spin labeling of a bacterial DnaB helicase for solid-state NMR.
    Zehnder J; Cadalbert R; Yulikov M; Künze G; Wiegand T
    J Magn Reson; 2021 Nov; 332():107075. PubMed ID: 34597956
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Paramagnetic ions enable tuning of nuclear relaxation rates and provide long-range structural restraints in solid-state NMR of proteins.
    Nadaud PS; Helmus JJ; Kall SL; Jaroniec CP
    J Am Chem Soc; 2009 Jun; 131(23):8108-20. PubMed ID: 19445506
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Deuterium nuclear magnetic resonance spectroscopy of deuterated pyridine-iron(III) porphyrin complexes. Locations and relaxation times of bound deuterated pyridine resonances.
    Shimizu T; Nozawa T; Hatano M
    J Biochem; 1982 Jun; 91(6):1951-8. PubMed ID: 7118856
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A new approach in 1D and 2D 13C high-resolution solid-state NMR spectroscopy of paramagnetic organometallic complexes by very fast magic-angle spinning.
    Ishii Y; Wickramasinghe NP; Chimon S
    J Am Chem Soc; 2003 Mar; 125(12):3438-9. PubMed ID: 12643699
    [TBL] [Abstract][Full Text] [Related]  

  • 26.
    Dalvit C; Piotto M
    Magn Reson Chem; 2017 Feb; 55(2):106-114. PubMed ID: 27514284
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Determination of the electron relaxation rates in paramagnetic metal complexes: applicability of available NMR methods.
    Jensen MR; Led JJ
    J Magn Reson; 2004 Apr; 167(2):169-77. PubMed ID: 15040973
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pulsed EPR and NMR spectroscopy of paramagnetic iron porphyrinates and related iron macrocycles: how to understand patterns of spin delocalization and recognize macrocycle radicals.
    Walker FA
    Inorg Chem; 2003 Jul; 42(15):4526-44. PubMed ID: 12870942
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A method to calculate the NMR spectra of paramagnetic species using thermalized electronic relaxation.
    Pell AJ
    J Magn Reson; 2021 May; 326():106939. PubMed ID: 33744830
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hydrogen bonding interpolymer complex formation and study of its host-guest interaction with cyclodextrin and its application as an active delivery vehicle.
    Das S; Joseph MT; Sarkar D
    Langmuir; 2013 Feb; 29(6):1818-30. PubMed ID: 23373846
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gadolinium(III) complexes of 1,4,7-triazacyclononane based picolinate ligands: simultaneous optimization of water exchange kinetics and electronic relaxation.
    Nonat A; Giraud M; Gateau C; Fries PH; Helm L; Mazzanti M
    Dalton Trans; 2009 Oct; (38):8033-46. PubMed ID: 19771367
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optorelaxers: Achieving real-time control of NMR relaxation.
    Yesinowski JP; Miller JB; Klug CA; Ricks-Laskoski HL
    Solid State Nucl Magn Reson; 2018 Dec; 96():1-9. PubMed ID: 30253250
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cut and paste RNA for nuclear magnetic resonance, paramagnetic resonance enhancement, and electron paramagnetic resonance structural studies.
    Duss O; Diarra Dit Konté N; Allain FH
    Methods Enzymol; 2015; 565():537-62. PubMed ID: 26577744
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hyperfine Effects in Ligand NMR: Paramagnetic Ru(III) Complexes with 3-Substituted Pyridines.
    Novotný J; Přichystal D; Sojka M; Komorovsky S; Nečas M; Marek R
    Inorg Chem; 2018 Jan; 57(2):641-652. PubMed ID: 29185727
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular flexibility demonstrated by paramagnetic enhancements of nuclear relaxation. Application to alamethicin: a voltage-gated peptide channel.
    North CL; Franklin JC; Bryant RG; Cafiso DS
    Biophys J; 1994 Nov; 67(5):1861-6. PubMed ID: 7532020
    [TBL] [Abstract][Full Text] [Related]  

  • 36. NMR characterization of weak interactions between RhoGDI2 and fragment screening hits.
    Liu J; Gao J; Li F; Ma R; Wei Q; Wang A; Wu J; Ruan K
    Biochim Biophys Acta Gen Subj; 2017 Jan; 1861(1 Pt A):3061-3070. PubMed ID: 27721047
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Monitoring electron spin fluctuations with paramagnetic relaxation enhancement.
    Jardón-Álvarez D; Malka T; van Tol J; Feldman Y; Carmieli R; Leskes M
    J Magn Reson; 2022 Mar; 336():107143. PubMed ID: 35085928
    [TBL] [Abstract][Full Text] [Related]  

  • 38. NMR Intermolecular Dipolar Cross-Relaxation in Nanoconfined Fluids.
    Chen JH; Haghmoradi A; Althaus SM
    J Phys Chem B; 2020 Nov; 124(45):10237-10244. PubMed ID: 33143425
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Paramagnetic doping of a 7TM membrane protein in lipid bilayers by Gd³⁺-complexes for solid-state NMR spectroscopy.
    Ullrich SJ; Hölper S; Glaubitz C
    J Biomol NMR; 2014 Jan; 58(1):27-35. PubMed ID: 24306181
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Assignment of heme methyl 1H-NMR resonances of high-spin and low-spin ferric complexes of cytochrome p450cam using one-dimensional and two-dimensional paramagnetic signals enhancement (PASE) magnetization transfer experiments.
    Mouro C; Bondon A; Jung C; De Certaines JD; Simonneaux G
    Eur J Biochem; 2000 Jan; 267(1):216-21. PubMed ID: 10601869
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.