BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 31458673)

  • 1. Use of the Multilayer Fragment Molecular Orbital Method to Predict the Rank Order of Protein-Ligand Binding Affinities: A Case Study Using Tankyrase 2 Inhibitors.
    Okimoto N; Otsuka T; Hirano Y; Taiji M
    ACS Omega; 2018 Apr; 3(4):4475-4485. PubMed ID: 31458673
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment and acceleration of binding energy calculations for protein-ligand complexes by the fragment molecular orbital method.
    Otsuka T; Okimoto N; Taiji M
    J Comput Chem; 2015 Nov; 36(30):2209-18. PubMed ID: 26400829
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of cyclin-dependent kinase 2 inhibitor potency using the fragment molecular orbital method.
    Mazanetz MP; Ichihara O; Law RJ; Whittaker M
    J Cheminform; 2011 Jan; 3(1):2. PubMed ID: 21219630
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy Decomposition Analysis of Protein-Ligand Interactions Using Molecules-in-Molecules Fragmentation-Based Method.
    Thapa B; Raghavachari K
    J Chem Inf Model; 2019 Aug; 59(8):3474-3484. PubMed ID: 31356073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing the performance of the MM/PBSA and MM/GBSA methods. 6. Capability to predict protein-protein binding free energies and re-rank binding poses generated by protein-protein docking.
    Chen F; Liu H; Sun H; Pan P; Li Y; Li D; Hou T
    Phys Chem Chem Phys; 2016 Aug; 18(32):22129-39. PubMed ID: 27444142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein/ligand binding free energies calculated with quantum mechanics/molecular mechanics.
    Gräter F; Schwarzl SM; Dejaegere A; Fischer S; Smith JC
    J Phys Chem B; 2005 May; 109(20):10474-83. PubMed ID: 16852269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimates of ligand-binding affinities supported by quantum mechanical methods.
    Söderhjelm P; Kongsted J; Genheden S; Ryde U
    Interdiscip Sci; 2010 Mar; 2(1):21-37. PubMed ID: 20640794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum-Mechanics Methodologies in Drug Discovery: Applications of Docking and Scoring in Lead Optimization.
    Crespo A; Rodriguez-Granillo A; Lim VT
    Curr Top Med Chem; 2017; 17(23):2663-2680. PubMed ID: 28685695
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An efficient computational method for calculating ligand binding affinities.
    Suenaga A; Okimoto N; Hirano Y; Fukui K
    PLoS One; 2012; 7(8):e42846. PubMed ID: 22916168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Binding-affinity predictions of HSP90 in the D3R Grand Challenge 2015 with docking, MM/GBSA, QM/MM, and free-energy simulations.
    Misini Ignjatović M; Caldararu O; Dong G; Muñoz-Gutierrez C; Adasme-Carreño F; Ryde U
    J Comput Aided Mol Des; 2016 Sep; 30(9):707-730. PubMed ID: 27565797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sourcing the affinity of flavonoids for the glycogen phosphorylase inhibitor site via crystallography, kinetics and QM/MM-PBSA binding studies: comparison of chrysin and flavopiridol.
    Tsitsanou KE; Hayes JM; Keramioti M; Mamais M; Oikonomakos NG; Kato A; Leonidas DD; Zographos SE
    Food Chem Toxicol; 2013 Nov; 61():14-27. PubMed ID: 23279842
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Binding Free Energy Calculation Based on the Fragment Molecular Orbital Method and Its Application in Designing Novel SHP-2 Allosteric Inhibitors.
    Yuan Z; Chen X; Fan S; Chang L; Chu L; Zhang Y; Wang J; Li S; Xie J; Hu J; Miao R; Zhu L; Zhao Z; Li H; Li S
    Int J Mol Sci; 2024 Jan; 25(1):. PubMed ID: 38203841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Free energy calculations to estimate ligand-binding affinities in structure-based drug design.
    Reddy MR; Reddy CR; Rathore RS; Erion MD; Aparoy P; Reddy RN; Reddanna P
    Curr Pharm Des; 2014; 20(20):3323-37. PubMed ID: 23947646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards predictive ligand design with free-energy based computational methods?
    Foloppe N; Hubbard R
    Curr Med Chem; 2006; 13(29):3583-608. PubMed ID: 17168725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fragment-based quantum mechanical calculation of protein-protein binding affinities.
    Wang Y; Liu J; Li J; He X
    J Comput Chem; 2018 Aug; 39(21):1617-1628. PubMed ID: 29707784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Postprocessing of docked protein-ligand complexes using implicit solvation models.
    Lindström A; Edvinsson L; Johansson A; Andersson CD; Andersson IE; Raubacher F; Linusson A
    J Chem Inf Model; 2011 Feb; 51(2):267-82. PubMed ID: 21309544
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical Analysis of Activity Cliffs among Benzofuranone-Class Pim1 Inhibitors Using the Fragment Molecular Orbital Method with Molecular Mechanics Poisson-Boltzmann Surface Area (FMO+MM-PBSA) Approach.
    Watanabe C; Watanabe H; Fukuzawa K; Parker LJ; Okiyama Y; Yuki H; Yokoyama S; Nakano H; Tanaka S; Honma T
    J Chem Inf Model; 2017 Dec; 57(12):2996-3010. PubMed ID: 29111719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discovery and optimization of triazine derivatives as ROCK1 inhibitors: molecular docking, molecular dynamics simulations and free energy calculations.
    Shen M; Zhou S; Li Y; Pan P; Zhang L; Hou T
    Mol Biosyst; 2013 Mar; 9(3):361-74. PubMed ID: 23340525
    [TBL] [Abstract][Full Text] [Related]  

  • 19. First Principles-Based Calculations of Free Energy of Binding: Application to Ligand Binding in a Self-Assembling Superstructure.
    Fox S; Wallnoefer HG; Fox T; Tautermann CS; Skylaris CK
    J Chem Theory Comput; 2011 Apr; 7(4):1102-8. PubMed ID: 26606358
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical Study of Protein-Ligand Interactions Using the Molecules-in-Molecules Fragmentation-Based Method.
    Thapa B; Beckett D; Erickson J; Raghavachari K
    J Chem Theory Comput; 2018 Oct; 14(10):5143-5155. PubMed ID: 30265003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.