These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 31458842)
1. Morphological Evolution of Gold Nanoparticles into Nanodendrites Using Catechol-Grafted Polymer Templates. Son HY; Kim KR; Hong CA; Nam YS ACS Omega; 2018 Jun; 3(6):6683-6691. PubMed ID: 31458842 [TBL] [Abstract][Full Text] [Related]
2. Bioinspired templating synthesis of metal-polymer hybrid nanostructures within 3D electrospun nanofibers. Son HY; Ryu JH; Lee H; Nam YS ACS Appl Mater Interfaces; 2013 Jul; 5(13):6381-90. PubMed ID: 23802857 [TBL] [Abstract][Full Text] [Related]
3. From nanoparticles to crystals: one-pot programmable biosynthesis of photothermal gold structures and their use for biomedical applications. Nudelman R; Alhmoud H; Delalat B; Kaur I; Vitkin A; Bourgeois L; Goldfarb I; Cifuentes-Rius A; Voelcker NH; Richter S J Nanobiotechnology; 2022 Nov; 20(1):482. PubMed ID: 36384747 [TBL] [Abstract][Full Text] [Related]
4. Facile fabrication of branched gold nanoparticles by reductive hydroxyphenol derivatives. Lee Y; Park TG Langmuir; 2011 Mar; 27(6):2965-71. PubMed ID: 21291171 [TBL] [Abstract][Full Text] [Related]
5. Synthesis of highly branched gold nanodendrites with a narrow size distribution and tunable NIR and SERS using a multiamine surfactant. Jia W; Li J; Jiang L ACS Appl Mater Interfaces; 2013 Aug; 5(15):6886-92. PubMed ID: 23820666 [TBL] [Abstract][Full Text] [Related]
6. Controlling Size, Morphology, and Surface Composition of AgAu Nanodendrites in 15 s for Improved Environmental Catalysis under Low Metal Loadings. da Silva AG; Rodrigues TS; Slater TJ; Lewis EA; Alves RS; Fajardo HV; Balzer R; da Silva AH; de Freitas IC; Oliveira DC; Assaf JM; Probst LF; Haigh SJ; Camargo PH ACS Appl Mater Interfaces; 2015 Nov; 7(46):25624-32. PubMed ID: 26544682 [TBL] [Abstract][Full Text] [Related]
7. Highly branched and ultrathin Au nanodendrites for reduction catalysis. Hao Q; Zhang Y; Zheng J; Guo K; Xu D J Colloid Interface Sci; 2024 Mar; 658():879-888. PubMed ID: 38157612 [TBL] [Abstract][Full Text] [Related]
8. Controlled synthesis of 2-D and 3-D dendritic platinum nanostructures. Song Y; Yang Y; Medforth CJ; Pereira E; Singh AK; Xu H; Jiang Y; Brinker CJ; van Swol F; Shelnutt JA J Am Chem Soc; 2004 Jan; 126(2):635-45. PubMed ID: 14719963 [TBL] [Abstract][Full Text] [Related]
9. Bioinspired Design of an Immobilization Interface for Highly Stable, Recyclable Nanosized Catalysts. Kim I; Son HY; Yang MY; Nam YS ACS Appl Mater Interfaces; 2015 Jul; 7(26):14415-22. PubMed ID: 26076196 [TBL] [Abstract][Full Text] [Related]
10. Tuning photothermal properties of gold nanodendrites for in vivo cancer therapy within a wide near infrared range by simply controlling their degree of branching. Qiu P; Yang M; Qu X; Huai Y; Zhu Y; Mao C Biomaterials; 2016 Oct; 104():138-44. PubMed ID: 27449950 [TBL] [Abstract][Full Text] [Related]
11. One pot electrochemical synthesis of poly(melamine) entrapped gold nanoparticles composite for sensitive and low level detection of catechol. Palanisamy S; Ramaraj SK; Chen SM; Chiu TW; Velusamy V; Yang TCK; Chen TW; Selvam S J Colloid Interface Sci; 2017 Jun; 496():364-370. PubMed ID: 28237754 [TBL] [Abstract][Full Text] [Related]
12. Shape tailored green synthesis and catalytic properties of gold nanocrystals. Rajan A; MeenaKumari M; Philip D Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jan; 118():793-9. PubMed ID: 24152864 [TBL] [Abstract][Full Text] [Related]
13. Protein-Poly(amino acid) Nanocore-Shell Mediated Synthesis of Branched Gold Nanostructures for Computed Tomographic Imaging and Photothermal Therapy of Cancer. Sasidharan S; Bahadur D; Srivastava R ACS Appl Mater Interfaces; 2016 Jun; 8(25):15889-903. PubMed ID: 27243100 [TBL] [Abstract][Full Text] [Related]
14. Surface-grafted hybrid material consisting of gold nanoparticles and dextran exhibits mobility and reversible aggregation on a surface. Lee S; Pérez-Luna VH Langmuir; 2007 Apr; 23(9):5097-9. PubMed ID: 17378591 [TBL] [Abstract][Full Text] [Related]
15. Rational Design of Branched Nanoporous Gold Nanoshells with Enhanced Physico-Optical Properties for Optical Imaging and Cancer Therapy. Song J; Yang X; Yang Z; Lin L; Liu Y; Zhou Z; Shen Z; Yu G; Dai Y; Jacobson O; Munasinghe J; Yung B; Teng GJ; Chen X ACS Nano; 2017 Jun; 11(6):6102-6113. PubMed ID: 28605594 [TBL] [Abstract][Full Text] [Related]
16. Controlled synthesis of dendritic gold nanostructures assisted by supramolecular complexes of surfactant with cyclodextrin. Huang T; Meng F; Qi L Langmuir; 2010 May; 26(10):7582-9. PubMed ID: 20043666 [TBL] [Abstract][Full Text] [Related]
17. Electrochemical sensor for catechol and dopamine based on a catalytic molecularly imprinted polymer-conducting polymer hybrid recognition element. Lakshmi D; Bossi A; Whitcombe MJ; Chianella I; Fowler SA; Subrahmanyam S; Piletska EV; Piletsky SA Anal Chem; 2009 May; 81(9):3576-84. PubMed ID: 19354259 [TBL] [Abstract][Full Text] [Related]
18. Gold nanoparticles-enhanced amperometric tyrosinase biosensor based on three-dimensional sol-gel film-modified gold electrodes. Li X; Ren T; Wang N; Ji X Anal Sci; 2013; 29(4):473-7. PubMed ID: 23574677 [TBL] [Abstract][Full Text] [Related]
19. Ultrasensitive detection of lead ion sensor based on gold nanodendrites modified electrode and electrochemiluminescent quenching of quantum dots by electrocatalytic silver/zinc oxide coupled structures. Li M; Kong Q; Bian Z; Ma C; Ge S; Zhang Y; Yu J; Yan M Biosens Bioelectron; 2015 Mar; 65():176-82. PubMed ID: 25461155 [TBL] [Abstract][Full Text] [Related]
20. Past, present, and future of gold nanoparticles. Jennings T; Strouse G Adv Exp Med Biol; 2007; 620():34-47. PubMed ID: 18217333 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]