BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 31459005)

  • 1. Programming ORR Activity of Ni/NiO
    Bhalothia D; Chou JP; Yan C; Hu A; Yang YT; Chen TY
    ACS Omega; 2018 Aug; 3(8):8733-8744. PubMed ID: 31459005
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformational Effects of Pt-Shells on Nanostructures and Corresponding Oxygen Reduction Reaction Activity of Au-Cluster-Decorated NiO
    Bhalothia D; Fan YJ; Lai YC; Yang YT; Yang YW; Lee CH; Chen TY
    Nanomaterials (Basel); 2019 Jul; 9(7):. PubMed ID: 31336802
    [TBL] [Abstract][Full Text] [Related]  

  • 3. H
    Bhalothia D; Lin CY; Yan C; Yang YT; Chen TY
    ACS Omega; 2019 Jan; 4(1):971-982. PubMed ID: 31459372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pt-Mediated Interface Engineering Boosts the Oxygen Reduction Reaction Performance of Ni Hydroxide-Supported Pd Nanoparticles.
    Bhalothia D; Yan C; Hiraoka N; Ishii H; Liao YF; Chen PC; Wang KW; Chou JP; Dai S; Chen TY
    ACS Appl Mater Interfaces; 2023 Mar; 15(12):16177-16188. PubMed ID: 36939741
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heterogeneous Cu-Pd binary interface boosts stability and mass activity of atomic Pt clusters in the oxygen reduction reaction.
    Chen HT; Chou JP; Lin CY; Hu CW; Yang YT; Chen TY
    Nanoscale; 2017 Jun; 9(21):7207-7216. PubMed ID: 28513715
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tri-atomic Pt clusters induce effective pathways in a Co
    Li H; Wang KW; Hu A; Chou JP; Chen TY
    Phys Chem Chem Phys; 2021 Sep; 23(33):18012-18025. PubMed ID: 34612275
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metallic Two-Dimensional Nanoframes: Unsupported Hierarchical Nickel-Platinum Alloy Nanoarchitectures with Enhanced Electrochemical Oxygen Reduction Activity and Stability.
    Godínez-Salomón F; Mendoza-Cruz R; Arellano-Jimenez MJ; Jose-Yacaman M; Rhodes CP
    ACS Appl Mater Interfaces; 2017 Jun; 9(22):18660-18674. PubMed ID: 28497954
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and characterization of Pd@Pt-Ni core-shell octahedra with high activity toward oxygen reduction.
    Choi SI; Shao M; Lu N; Ruditskiy A; Peng HC; Park J; Guerrero S; Wang J; Kim MJ; Xia Y
    ACS Nano; 2014 Oct; 8(10):10363-71. PubMed ID: 25247667
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Collaboration between a Pt-dimer and neighboring Co-Pd atoms triggers efficient pathways for oxygen reduction reaction.
    Li H; Dai S; Bhalothia D; Chou JP; Hu A; Chen TY
    Phys Chem Chem Phys; 2021 Jan; 23(3):1822-1834. PubMed ID: 33393548
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gradient-Concentration Design of Stable Core-Shell Nanostructure for Acidic Oxygen Reduction Electrocatalysis.
    Lyu X; Jia Y; Mao X; Li D; Li G; Zhuang L; Wang X; Yang D; Wang Q; Du A; Yao X
    Adv Mater; 2020 Aug; 32(32):e2003493. PubMed ID: 32596981
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pt@Pd(x)Cu(y)/C core-shell electrocatalysts for oxygen reduction reaction in fuel cells.
    Cochell T; Manthiram A
    Langmuir; 2012 Jan; 28(2):1579-87. PubMed ID: 22149212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural and electronic effects of carbon-supported Pt(x)Pd(1-x) nanoparticles on the electrocatalytic activity of the oxygen-reduction reaction and on methanol tolerance.
    Chang SH; Su WN; Yeh MH; Pan CJ; Yu KL; Liu DG; Lee JF; Hwang BJ
    Chemistry; 2010 Sep; 16(36):11064-71. PubMed ID: 20690117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of bimetallic Pt-Pd core-shell nanocrystals and their high electrocatalytic activity modulated by Pd shell thickness.
    Li Y; Wang ZW; Chiu CY; Ruan L; Yang W; Yang Y; Palmer RE; Huang Y
    Nanoscale; 2012 Feb; 4(3):845-51. PubMed ID: 22159178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tailoring of Pd-Pt bimetallic clusters with high stability for oxygen reduction reaction.
    Cheng D; Wang W
    Nanoscale; 2012 Apr; 4(7):2408-15. PubMed ID: 22374435
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High performance layer-by-layer Pt
    Huang JF; Tseng PK
    Chem Sci; 2018 Jul; 9(28):6134-6142. PubMed ID: 30090301
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atomic layer deposition of Pd nanoparticles on self-supported carbon-Ni/NiO-Pd nanofiber electrodes for electrochemical hydrogen and oxygen evolution reactions.
    Barhoum A; El-Maghrabi HH; Iatsunskyi I; Coy E; Renard A; Salameh C; Weber M; Sayegh S; Nada AA; Roualdes S; Bechelany M
    J Colloid Interface Sci; 2020 Jun; 569():286-297. PubMed ID: 32114107
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Platinum-based oxygen reduction electrocatalysts.
    Wu J; Yang H
    Acc Chem Res; 2013 Aug; 46(8):1848-57. PubMed ID: 23808919
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atomic PdAu Interlayer Sandwiched into Pd/Pt Core/Shell Nanowires Achieves Superstable Oxygen Reduction Catalysis.
    Tao L; Huang B; Jin F; Yang Y; Luo M; Sun M; Liu Q; Gao F; Guo S
    ACS Nano; 2020 Sep; 14(9):11570-11578. PubMed ID: 32816456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A facile approach to high-performance trifunctional electrocatalysts by substrate-enhanced electroless deposition of Pt/NiO/Ni on carbon nanotubes.
    Bian Y; Wang H; Gao Z; Hu J; Liu D; Dai L
    Nanoscale; 2020 Jul; 12(27):14615-14625. PubMed ID: 32614020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Colloidal synthesis of monodisperse trimetallic Pt-Fe-Ni nanocrystals and their enhanced electrochemical performances.
    Li C; Pan J; Zhang L; Fang J
    Nanotechnology; 2022 Dec; 34(7):. PubMed ID: 36384027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.