BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 31459053)

  • 1. Conductance Switching in Single-Peptide Molecules through Interferer Binding.
    Huang LW; Su YH; Kaun CC
    ACS Omega; 2018 Aug; 3(8):9191-9195. PubMed ID: 31459053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and spectroscopic characterization of peptide models for the plastocyanin copper-binding loop.
    Daugherty RG; Wasowicz T; Gibney BR; DeRose VJ
    Inorg Chem; 2002 May; 41(10):2623-32. PubMed ID: 12005485
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cu(I) binding to the Schizosaccharomyces pombe gamma-glutamyl peptides varying in chain lengths.
    Mehra RK; Winge DR
    Arch Biochem Biophys; 1988 Sep; 265(2):381-9. PubMed ID: 3421713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissociation of copper(II) ternary complexes containing cystine.
    Ke Y; Zhao J; Siu KW; Hopkinson AC
    Phys Chem Chem Phys; 2010 Aug; 12(31):9017-28. PubMed ID: 20539872
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactions of disulfide-constrained cyclic tetrapeptides with Cu(2+).
    Zhang L; Luo Z; Zhang L; Jia L; Wu L
    J Biol Inorg Chem; 2013 Feb; 18(2):277-286. PubMed ID: 23340690
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Copper(I) interaction with model peptides of WD6 and TM6 domains of Wilson ATPase: regulatory and mechanistic implications.
    Myari A; Hadjiliadis N; Fatemi N; Sarkar B
    J Inorg Biochem; 2004 Sep; 98(9):1483-94. PubMed ID: 15337600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of molybdocene dichloride with cysteine-containing peptides: coordination, regioselective hydrolysis, and intramolecular aminolysis.
    Erxleben A
    Inorg Chem; 2005 Feb; 44(4):1082-94. PubMed ID: 15859290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Constrained Tetrapeptide as a Model of Cu(I) Binding Sites Involving Cu
    Mesterházy E; Lebrun C; Jancsó A; Delangle P
    Inorg Chem; 2018 May; 57(10):5723-5731. PubMed ID: 29327922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biothiols as chelators for preparation of N-(aminobutyl)-N-(ethylisoluminol)/Cu(2+) complexes bifunctionalized gold nanoparticles and sensitive sensing of pyrophosphate ion.
    Li F; Liu Y; Zhuang M; Zhang H; Liu X; Cui H
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):18104-11. PubMed ID: 25275558
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermoelectric properties of oligoglycine molecular wires.
    Hou S; Wu Q; Sadeghi H; Lambert CJ
    Nanoscale; 2019 Feb; 11(8):3567-3573. PubMed ID: 30632577
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stimulation and oxidative catalytic inactivation of thermolysin by copper.Cys-Gly-His-Lys.
    Gokhale NH; Bradford S; Cowan JA
    J Biol Inorg Chem; 2007 Sep; 12(7):981-7. PubMed ID: 17618468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of highly selective fluorescent peptide probes for metal ions: tuning selective metal monitoring with secondary structure.
    Joshi BP; Lee KH
    Bioorg Med Chem; 2008 Sep; 16(18):8501-9. PubMed ID: 18723358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multifunctional peptide-based fluorescent chemosensor for detection of Hg
    Pang X; Wang L; Gao L; Feng H; Kong J; Li L
    Luminescence; 2019 Sep; 34(6):585-594. PubMed ID: 31074183
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spontaneous resolution of binary copper(II) complexes with racemic dipeptides: crystal structures of glycyl-L-alpha-amino-n-butyrato copper(II) monohydrate, glycyl-D-valinato copper(II) hemihydrate, and glycyl-L-valinato copper(II) hemihydrate.
    Inomata Y; Yamaguchi T; Tomita A; Yamada D; Howell FS
    J Inorg Biochem; 2005 Aug; 99(8):1611-8. PubMed ID: 15963569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced bioaccumulation of heavy metal ions by bacterial cells due to surface display of short metal binding peptides.
    Kotrba P; Dolecková L; de Lorenzo V; Ruml T
    Appl Environ Microbiol; 1999 Mar; 65(3):1092-8. PubMed ID: 10049868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biochemical characterization of CopA, the Escherichia coli Cu(I)-translocating P-type ATPase.
    Fan B; Rosen BP
    J Biol Chem; 2002 Dec; 277(49):46987-92. PubMed ID: 12351646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cys-Gly specific dipeptidase Dug1p from S. cerevisiae binds promiscuously to di-, tri-, and tetra-peptides: Peptide-protein interaction, homology modeling, and activity studies reveal a latent promiscuity in substrate recognition.
    Kaur H; Datt M; Ekka MK; Mittal M; Singh AK; Kumaran S
    Biochimie; 2011 Feb; 93(2):175-86. PubMed ID: 20868722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Harnessing the flexibility of peptidic scaffolds to control their copper(II)-coordination properties: a potentiometric and spectroscopic study.
    Fragoso A; Lamosa P; Delgado R; Iranzo O
    Chemistry; 2013 Feb; 19(6):2076-88. PubMed ID: 23293061
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.