BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 31459082)

  • 1. Effect of Surface Functionalization and Physical Properties of Nanoinclusions on Thermal Conductivity Enhancement in an Organic Phase Change Material.
    Mishra AK; Lahiri BB; Philip J
    ACS Omega; 2018 Aug; 3(8):9487-9504. PubMed ID: 31459082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Review on thermal properties of nanofluids: Recent developments.
    Angayarkanni SA; Philip J
    Adv Colloid Interface Sci; 2015 Nov; 225():146-76. PubMed ID: 26391519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase Change Material with Gelation Imparting Shape Stability.
    Vasilyev G; Koifman N; Shuster M; Gishvoliner M; Cohen Y; Zussman E
    ACS Omega; 2022 Apr; 7(14):11887-11902. PubMed ID: 35449967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ballistic Heat Transport in Nanocomposite: The Role of the Shape and Interconnection of Nanoinclusions.
    Desmarchelier P; Carré A; Termentzidis K; Tanguy A
    Nanomaterials (Basel); 2021 Jul; 11(8):. PubMed ID: 34443813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermo-kinetic behaviour of green synthesized nanomaterial enhanced organic phase change material: Model fitting approach.
    Kalidasan B; Pandey AK; Aljafari B; Chinnasamy S; Kareri T; Rahman S
    J Environ Manage; 2023 Dec; 348():119439. PubMed ID: 37890400
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing the Effect of MWCNT Nanoinclusions on the Thermoelectric Performance of Cu
    Theja VCS; Karthikeyan V; Assi DS; Gopalan S; Roy VAL
    ACS Omega; 2022 Dec; 7(51):48484-48492. PubMed ID: 36591112
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal management of photovoltaic panel with nano-enhanced phase change material at different inclinations.
    Sasidharan UK; Bandaru R
    Environ Sci Pollut Res Int; 2022 May; 29(23):34759-34775. PubMed ID: 35040060
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A newly designed paraffin@VO
    Cheng T; Wang N; Wang H; Sun R; Wong CP
    J Colloid Interface Sci; 2020 Feb; 559():226-235. PubMed ID: 31629276
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Natural Microtubule-Encapsulated Phase-Change Material with Simultaneously High Latent Heat Capacity and Enhanced Thermal Conductivity.
    Song S; Zhao T; Zhu W; Qiu F; Wang Y; Dong L
    ACS Appl Mater Interfaces; 2019 Jun; 11(23):20828-20837. PubMed ID: 31117448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal Interface Engineering in a 3D-Structured Carbon Framework for a Phase-Change Composite with High Thermal Conductivity.
    Zhang Y; Jiang Z; Qin Y; Ye C; Liu J; Ouyang T
    ACS Appl Mater Interfaces; 2023 Oct; 15(41):48235-48245. PubMed ID: 37787666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic heat transfer and thermal performance evaluation of PCM-doped hybrid hollow plaster panels for buildings.
    Wi S; Yang S; Lee J; Chang SJ; Kim S
    J Hazard Mater; 2019 Jul; 374():428-436. PubMed ID: 31055143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advanced phase change composite by thermally annealed defect-free graphene for thermal energy storage.
    Xin G; Sun H; Scott SM; Yao T; Lu F; Shao D; Hu T; Wang G; Ran G; Lian J
    ACS Appl Mater Interfaces; 2014 Sep; 6(17):15262-71. PubMed ID: 25111062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced Thermal Buffering of Phase Change Materials by the Intramicrocapsule Sub per Mille CNT Dopant.
    Mikhaylov AA; Sladkevich S; Medvedev AG; Prikhodchenko PV; Gun J; Sakharov KA; Xu ZJ; Kulish V; Nikolaev VA; Lev O
    ACS Appl Mater Interfaces; 2020 Apr; 12(14):16227-16235. PubMed ID: 32167739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal storage properties of lightweight concrete incorporating phase change materials with different fusion points in hybrid form for high temperature applications.
    Sukontasukkul P; Sangpet T; Newlands M; Yoo DY; Tangchirapat W; Limkatanyu S; Chindaprasirt P
    Heliyon; 2020 Sep; 6(9):e04863. PubMed ID: 32954037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoparticles to Enhance Melting Performance of Phase Change Materials for Thermal Energy Storage.
    Han Y; Yang Y; Mallick T; Wen C
    Nanomaterials (Basel); 2022 May; 12(11):. PubMed ID: 35683720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Review of Thermal Property Enhancements of Low-Temperature Nano-Enhanced Phase Change Materials.
    Williams JD; Peterson GP
    Nanomaterials (Basel); 2021 Sep; 11(10):. PubMed ID: 34685017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heat storage material: a hope in solar thermal.
    Sehrawat R; Sahdev RK; Tiwari S
    Environ Sci Pollut Res Int; 2023 Jan; 30(5):11175-11198. PubMed ID: 36509955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Form-Stable Solar Thermal Heat Packs Prepared by Impregnating Phase-Changing Materials within Carbon-Coated Copper Foams.
    Ye Q; Tao P; Chang C; Zhou L; Zeng X; Song C; Shang W; Wu J; Deng T
    ACS Appl Mater Interfaces; 2019 Jan; 11(3):3417-3427. PubMed ID: 30586272
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation and application of composite phase change materials stabilized by cellulose nanofibril-based foams for thermal energy storage.
    Shen Z; Kwon S; Lee HL; Toivakka M; Oh K
    Int J Biol Macromol; 2022 Dec; 222(Pt B):3001-3013. PubMed ID: 36244531
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polyethylene glycol with dual three-dimensional porous carbon nanotube/diamond: a high thermal conductivity of composite PCM.
    Feng X; Zhang Y; Yang Z; Zhao Z; Zhu F; Wei X; Chen L; Liu J; Feng Y; Li C; Feng D; Wei J
    Nanotechnology; 2023 Dec; 35(9):. PubMed ID: 37995375
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.