These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
26. Effect of Styrene-Diene Block Copolymers and Glass Bubbles on the Post-Consumer Recycled Polypropylene Properties. Râpă M; Spurcaciu BN; Coman G; Nicolae CA; Gabor RA; Ghioca PN; Berbecaru AC; Matei E; Predescu C Materials (Basel); 2020 Jan; 13(3):. PubMed ID: 31979228 [TBL] [Abstract][Full Text] [Related]
27. Cotton based composite fabric reinforced with waste polyester fibers for improved mechanical properties. Sharma K; Khilari V; Chaudhary BU; Jogi AB; Pandit AB; Kale RD Waste Manag; 2020 Apr; 107():227-234. PubMed ID: 32311640 [TBL] [Abstract][Full Text] [Related]
28. Integrated Approach to Eco-Friendly Thermoplastic Composites Based on Chemically Recycled PET Co-Polymers Reinforced with Treated Banana Fibres. Kuete MA; Van Velthem P; Ballout W; Nysten B; Devaux J; Ndikontar MK; Pardoen T; Bailly C Polymers (Basel); 2022 Nov; 14(22):. PubMed ID: 36432919 [TBL] [Abstract][Full Text] [Related]
29. Lifting the Sustainability of Modified Pet-Based Multilayer Packaging Material with Enhanced Mechanical Recycling Potential and Processing. Trossaert L; De Vel M; Cardon L; Edeleva M Polymers (Basel); 2022 Jan; 14(1):. PubMed ID: 35012219 [TBL] [Abstract][Full Text] [Related]
30. Novel Hot Melt Extruded Matrices of Hydroxypropyl Cellulose and Amorphous Felodipine-Plasticized Hydroxypropyl Methylcellulose as Controlled Release Systems. Yi S; Wang J; Lu Y; Ma R; Gao Q; Liu S; Xiong S AAPS PharmSciTech; 2019 Jun; 20(6):219. PubMed ID: 31201583 [TBL] [Abstract][Full Text] [Related]
32. Rheological and Functional Properties of Mechanically Recycled Post-Consumer Rigid Polyethylene Packaging Waste. Boz Noyan EC; Rehle F; Boldizar A Materials (Basel); 2024 Apr; 17(8):. PubMed ID: 38673212 [TBL] [Abstract][Full Text] [Related]
33. Closing the loop for PET, PE and PP waste from households: Influence of material properties and product design for plastic recycling. Eriksen MK; Christiansen JD; Daugaard AE; Astrup TF Waste Manag; 2019 Aug; 96():75-85. PubMed ID: 31376972 [TBL] [Abstract][Full Text] [Related]
34. Effect of PVP on the characteristic of modified membranes made from waste PET bottles for humic acid removal. Arahman N; Fahrina A; Amalia S; Sunarya R; Mulyati S F1000Res; 2017; 6():668. PubMed ID: 28690833 [No Abstract] [Full Text] [Related]
35. A case for closed-loop recycling of post-consumer PET for automotive foams. Bedell M; Brown M; Kiziltas A; Mielewski D; Mukerjee S; Tabor R Waste Manag; 2018 Jan; 71():97-108. PubMed ID: 29113836 [TBL] [Abstract][Full Text] [Related]
36. Recycled Poly(Ethylene Terephthalate) from Waste Textiles with Improved Thermal and Rheological Properties by Chain Extension. Wu WJ; Sun XL; Chen Q; Qian Q Polymers (Basel); 2022 Jan; 14(3):. PubMed ID: 35160503 [TBL] [Abstract][Full Text] [Related]
38. Recycling woven plastic sack waste and PET bottle waste as fiber in recycled aggregate concrete: An experimental study. Bui NK; Satomi T; Takahashi H Waste Manag; 2018 Aug; 78():79-93. PubMed ID: 32559972 [TBL] [Abstract][Full Text] [Related]
39. Properties of Polyethylene Terephthalate (PET) after Thermo-Oxidative Aging. Panowicz R; Konarzewski M; Durejko T; Szala M; Łazińska M; Czerwińska M; Prasuła P Materials (Basel); 2021 Jul; 14(14):. PubMed ID: 34300752 [TBL] [Abstract][Full Text] [Related]
40. An overview of polylactides as packaging materials. Auras R; Harte B; Selke S Macromol Biosci; 2004 Sep; 4(9):835-64. PubMed ID: 15468294 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]