These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 31459196)
1. Ultrafine Pd Nanoparticles Anchored on Nitrogen-Doping Carbon for Boosting Catalytic Transfer Hydrogenation of Nitroarenes. Zhang L; Liu X; Zhou X; Gao S; Shang N; Feng C; Wang C ACS Omega; 2018 Sep; 3(9):10843-10850. PubMed ID: 31459196 [TBL] [Abstract][Full Text] [Related]
2. Ultrafine Pd nanoparticles immobilized on N-doped hollow carbon nanospheres with superior catalytic performance for the selective oxidation of 5-hydroxymethylfurfural and hydrogenation of nitroarenes. Zhu Y; Wang F; Fan M; Zhu Q; Dong Z J Colloid Interface Sci; 2019 Oct; 553():588-597. PubMed ID: 31238229 [TBL] [Abstract][Full Text] [Related]
3. Biomass Sucrose-Derived Cobalt@Nitrogen-Doped Carbon for Catalytic Transfer Hydrogenation of Nitroarenes with Formic Acid. Yuan M; Long Y; Yang J; Hu X; Xu D; Zhu Y; Dong Z ChemSusChem; 2018 Dec; 11(23):4156-4165. PubMed ID: 30240135 [TBL] [Abstract][Full Text] [Related]
4. Nitrogen and Phosphorus Dual-Coordinated Single-Atom Mn: MnN Su T; Cai C ACS Appl Mater Interfaces; 2022 Dec; 14(50):55568-55576. PubMed ID: 36509748 [TBL] [Abstract][Full Text] [Related]
5. Size-Dependent Catalytic Activity of Palladium Nanoparticles Fabricated in Porous Organic Polymers for Alkene Hydrogenation at Room Temperature. Mondal J; Trinh QT; Jana A; Ng WK; Borah P; Hirao H; Zhao Y ACS Appl Mater Interfaces; 2016 Jun; 8(24):15307-19. PubMed ID: 27258184 [TBL] [Abstract][Full Text] [Related]
6. Monodisperse Ag/Pd core/shell nanoparticles assembled on reduced graphene oxide as highly efficient catalysts for the transfer hydrogenation of nitroarenes. Metin Ö; Can H; Şendil K; Gültekin MS J Colloid Interface Sci; 2017 Jul; 498():378-386. PubMed ID: 28343135 [TBL] [Abstract][Full Text] [Related]
7. Pyridinic Nitrogen-Doped Graphene Nanoshells Boost the Catalytic Efficiency of Palladium Nanoparticles for the N-Allylation Reaction. Li X; Zhao Q; Feng X; Pan L; Wu Z; Wu X; Ma T; Liu J; Pan Y; Song Y; Wu M ChemSusChem; 2019 Feb; 12(4):858-865. PubMed ID: 30600929 [TBL] [Abstract][Full Text] [Related]
8. Biowaste soybean curd residue-derived Pd/nitrogen-doped porous carbon with excellent catalytic performance for phenol hydrogenation. Zhu Y; Yu G; Yang J; Yuan M; Xu D; Dong Z J Colloid Interface Sci; 2019 Jan; 533():259-267. PubMed ID: 30170277 [TBL] [Abstract][Full Text] [Related]
9. The Role of Nitrogen-doping in the Catalytic Transfer Hydrogenation of Phenol to Cyclohexanone with Formic Acid over Pd supported on Carbon Nanotubes. Hu B; Li X; Busser W; Schmidt S; Xia W; Li G; Li X; Peng B Chemistry; 2021 Jul; 27(42):10948-10956. PubMed ID: 33998733 [TBL] [Abstract][Full Text] [Related]
10. Graphitic Carbon Nitride Supported Ultrafine Pd and Pd-Cu Catalysts: Enhanced Reactivity, Selectivity, and Longevity for Nitrite and Nitrate Hydrogenation. Ye T; Durkin DP; Banek NA; Wagner MJ; Shuai D ACS Appl Mater Interfaces; 2017 Aug; 9(33):27421-27426. PubMed ID: 28796946 [TBL] [Abstract][Full Text] [Related]
11. Fabrication of Nitrogen-Doped Mesoporous-Carbon-Coated Palladium Nanoparticles: An Intriguing Electrocatalyst for Methanol and Formic Acid Oxidation. Ray C; Dutta S; Sahoo R; Roy A; Negishi Y; Pal T Chem Asian J; 2016 May; 11(10):1588-96. PubMed ID: 27016895 [TBL] [Abstract][Full Text] [Related]
12. Amine-Functionalized Carbon Bowl-Supported Pd-La(OH) Sun X; Zhang G; Yao Q; Li H; Feng G; Lu ZH Inorg Chem; 2022 Nov; 61(45):18102-18111. PubMed ID: 36325636 [TBL] [Abstract][Full Text] [Related]
13. Effect of the supports on catalytic activity of Pd catalysts for liquid-phase hydrodechlorination/hydrogenation reaction. Lan L; Liu Y; Liu S; Ma X; Li X; Dong Z; Xia C Environ Technol; 2019 May; 40(12):1615-1623. PubMed ID: 29319422 [TBL] [Abstract][Full Text] [Related]
14. Biomass Nanoporous Carbon-Supported Pd Catalysts for Partial Hydrogenation of Biodiesel: Effects of Surface Chemistry on Pd Particle Size and Catalytic Performance. Udomsap P; Meesiri S; Chollacoop N; Eiad-Ua A Nanomaterials (Basel); 2021 May; 11(6):. PubMed ID: 34071581 [TBL] [Abstract][Full Text] [Related]
15. Palladium Nanoparticles Supported on Nitrogen and Sulfur Dual-Doped Graphene as Highly Active Electrocatalysts for Formic Acid and Methanol Oxidation. Zhang X; Zhu J; Tiwary CS; Ma Z; Huang H; Zhang J; Lu Z; Huang W; Wu Y ACS Appl Mater Interfaces; 2016 May; 8(17):10858-65. PubMed ID: 27082661 [TBL] [Abstract][Full Text] [Related]
16. Ultrafine Pd Nanoparticles Supported on Soft Nitriding Porous Carbon for Hydrogen Production from Hydrolytic Dehydrogenation of Dimethyl Amine-Borane. Wen Z; Fu Q; Wu J; Fan G Nanomaterials (Basel); 2020 Aug; 10(8):. PubMed ID: 32824554 [TBL] [Abstract][Full Text] [Related]
17. A Palladium Catalyst Supported on Boron-Doped Porous Carbon for Efficient Dehydrogenation of Formic Acid. Liu H; Huang M; Tao W; Han L; Zhang J; Zhao Q Nanomaterials (Basel); 2024 Mar; 14(6):. PubMed ID: 38535697 [TBL] [Abstract][Full Text] [Related]
18. Resin-Immobilized Palladium Nanoparticle Catalysts for Organic Reactions in Aqueous Media: Morphological Aspects. Mastrorilli P; Dell'Anna MM; Rizzuti A; Mali M; Zapparoli M; Leonelli C Molecules; 2015 Oct; 20(10):18661-84. PubMed ID: 26473823 [TBL] [Abstract][Full Text] [Related]
19. Dehydrogenation of Formic Acid at Room Temperature: Boosting Palladium Nanoparticle Efficiency by Coupling with Pyridinic-Nitrogen-Doped Carbon. Bi QY; Lin JD; Liu YM; He HY; Huang FQ; Cao Y Angew Chem Int Ed Engl; 2016 Sep; 55(39):11849-53. PubMed ID: 27552650 [TBL] [Abstract][Full Text] [Related]
20. Hydrogenation of biofuels with formic acid over a palladium-based ternary catalyst with two types of active sites. Wang L; Zhang B; Meng X; Su DS; Xiao FS ChemSusChem; 2014 Jun; 7(6):1537-41. PubMed ID: 24861954 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]