These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 31459323)

  • 21. Co₃O₄@CoS Core-Shell Nanosheets on Carbon Cloth for High Performance Supercapacitor Electrodes.
    Ning J; Zhang T; He Y; Jia C; Saha P; Cheng Q
    Materials (Basel); 2017 Jun; 10(6):. PubMed ID: 28772968
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Vertically Aligned Graphene-Carbon Fiber Hybrid Electrodes with Superlong Cycling Stability for Flexible Supercapacitors.
    Cherusseri J; Sambath Kumar K; Pandey D; Barrios E; Thomas J
    Small; 2019 Oct; 15(44):e1902606. PubMed ID: 31512364
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Making a commercial carbon fiber cloth having comparable capacitances to carbon nanotubes and graphene in supercapacitors through a "top-down" approach.
    Zhang T; Kim CH; Cheng Y; Ma Y; Zhang H; Liu J
    Nanoscale; 2015 Feb; 7(7):3285-91. PubMed ID: 25623779
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The performance of sulphur doped activated carbon supercapacitors prepared from waste tea.
    Yaglikci S; Gokce Y; Yagmur E; Aktas Z
    Environ Technol; 2020 Jan; 41(1):36-48. PubMed ID: 30681935
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electrodeposited polyethylenedioxythiophene with infiltrated gel electrolyte interface: a close contest of an all-solid-state supercapacitor with its liquid-state counterpart.
    Anothumakkool B; Torris A T A; Bhange SN; Badiger MV; Kurungot S
    Nanoscale; 2014 Jun; 6(11):5944-52. PubMed ID: 24764081
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Three-Dimensional Porous Carbon Nanotubes/Reduced Graphene Oxide Fiber from Rapid Phase Separation for a High-Rate All-Solid-State Supercapacitor.
    Ma W; Li M; Zhou X; Li J; Dong Y; Zhu M
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):9283-9290. PubMed ID: 30762337
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Two-Dimensional Mn
    Sambath Kumar K; Cherusseri J; Thomas J
    ACS Omega; 2019 Feb; 4(2):4472-4480. PubMed ID: 31459642
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Textile carbon network with enhanced areal capacitance prepared by chemical activation of cotton cloth.
    Zhang W; Guo R; Sun J; Dang L; Liu Z; Lei Z; Sun Q
    J Colloid Interface Sci; 2019 Oct; 553():705-712. PubMed ID: 31254868
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A novel SWCNT-polyoxometalate nanohybrid material as an electrode for electrochemical supercapacitors.
    Chen HY; Al-Oweini R; Friedl J; Lee CY; Li L; Kortz U; Stimming U; Srinivasan M
    Nanoscale; 2015 May; 7(17):7934-41. PubMed ID: 25866193
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electrochemical activation of carbon cloth in aqueous inorganic salt solution for superior capacitive performance.
    Ye D; Yu Y; Tang J; Liu L; Wu Y
    Nanoscale; 2016 May; 8(19):10406-14. PubMed ID: 27141910
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrochemical Growth of High-Strength Carbon Nanocoils in Molten Carbonates.
    Yu R; Xiang J; Du K; Deng B; Chen D; Yin H; Liu Z; Wang D
    Nano Lett; 2022 Jan; 22(1):97-104. PubMed ID: 34958590
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Flexible superior electrode architectures based on three-dimensional porous spinous α-Fe2O3 with a high performance as a supercapacitor.
    Nan H; Yu L; Ma W; Geng B; Zhang X
    Dalton Trans; 2015 May; 44(20):9581-7. PubMed ID: 25921621
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bottom-Up Fabrication of Activated Carbon Fiber for All-Solid-State Supercapacitor with Excellent Electrochemical Performance.
    Ma W; Chen S; Yang S; Chen W; Weng W; Zhu M
    ACS Appl Mater Interfaces; 2016 Jun; 8(23):14622-7. PubMed ID: 27239680
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Carbon nanospheres derived from Lablab purpureus for high performance supercapacitor electrodes: a green approach.
    Ali GAM; Divyashree A; Supriya S; Chong KF; Ethiraj AS; Reddy MV; Algarni H; Hegde G
    Dalton Trans; 2017 Oct; 46(40):14034-14044. PubMed ID: 28979958
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fabrication of hollow nanorod electrodes based on RuO
    Wang Q; Liang X; Ma Y; Zhang D
    Dalton Trans; 2018 Jun; 47(23):7747-7753. PubMed ID: 29808194
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Highly Uniform Anodically Deposited Film of MnO
    Rafique A; Massa A; Fontana M; Bianco S; Chiodoni A; Pirri CF; Hernández S; Lamberti A
    ACS Appl Mater Interfaces; 2017 Aug; 9(34):28386-28393. PubMed ID: 28787123
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 3-Dimensional Porous Carbon with High Nitrogen Content Obtained from Longan Shell and Its Excellent Performance for Aqueous and All-Solid-State Supercapacitors.
    Liu Y; Qu X; Huang G; Xing B; Zhang F; Li B; Zhang C; Cao Y
    Nanomaterials (Basel); 2020 Apr; 10(4):. PubMed ID: 32340316
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhanced electrochemical behaviors of carbon felt electrode using redox-active electrolyte for all-solid-state supercapacitors.
    Chen L; Wu C; Qin W; Wang X; Jia C
    J Colloid Interface Sci; 2020 Oct; 577():12-18. PubMed ID: 32470700
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cellulose nanofibril/reduced graphene oxide/carbon nanotube hybrid aerogels for highly flexible and all-solid-state supercapacitors.
    Zheng Q; Cai Z; Ma Z; Gong S
    ACS Appl Mater Interfaces; 2015 Feb; 7(5):3263-71. PubMed ID: 25625769
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pulse electrodeposited manganese oxide on carbon fibers as electrodes for high capacity supercapacitors.
    Gudavalli GS; Turner JN; Dhakal TP
    Nanotechnology; 2019 Nov; 30(45):455701. PubMed ID: 31362268
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.