These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 31459388)

  • 1. Polyaniline-Layered Rutile TiO
    Roy A; Mukhopadhyay S; Devi PS; Sundaram S
    ACS Omega; 2019 Jan; 4(1):1130-1138. PubMed ID: 31459388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrothermal synthesis of a crystalline rutile TiO2 nanorod based network for efficient dye-sensitized solar cells.
    Yu H; Pan J; Bai Y; Zong X; Li X; Wang L
    Chemistry; 2013 Sep; 19(40):13569-74. PubMed ID: 23939704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study on Surface and Crystallinity of TiO₂ Microspheres as the Photoanode of Dye-Sensitized Solar Cells.
    Ma J; Zhao J; Ren W; Tang B
    J Nanosci Nanotechnol; 2018 Mar; 18(3):1977-1982. PubMed ID: 29448695
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Significant enhancement of power conversion efficiency for dye sensitized solar cell using 1D/3D network nanostructures as photoanodes.
    Wang H; Wang B; Yu J; Hu Y; Xia C; Zhang J; Liu R
    Sci Rep; 2015 Mar; 5():9305. PubMed ID: 25800933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of CdS Morphology on the Efficiency of Dye-Sensitized Solar Cells.
    Alkuam E; Badradeen E; Guisbiers G
    ACS Omega; 2018 Oct; 3(10):13433-13441. PubMed ID: 31458055
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A double layered TiO2 photoanode consisting of hierarchical flowers and nanoparticles for high-efficiency dye-sensitized solar cells.
    Wu WQ; Xu YF; Rao HS; Su CY; Kuang DB
    Nanoscale; 2013 May; 5(10):4362-9. PubMed ID: 23571714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Graphene/TiO₂ Composite Layer on the Performance of Dye-Sensitized Solar Cells.
    Wei L; Chen S; Yang Y; Dong Y; Song W; Fan R
    J Nanosci Nanotechnol; 2018 Feb; 18(2):976-983. PubMed ID: 29448522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmonic-resonance-based ternary composite complementary enhancement of the performance of dye-sensitized solar cells.
    Bai L; Li M; Liu X; Luoshan M; Zhang F; Guo K; Zhu Y; Sun B; Zhao X
    Nanotechnology; 2016 Oct; 27(41):415202. PubMed ID: 27595326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of photovoltaic properties of TiO2 electrodes prepared with nanoparticles and nanorods.
    Nam SH; Ju DW; Boo JH
    J Nanosci Nanotechnol; 2014 Dec; 14(12):9406-10. PubMed ID: 25971074
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced photovoltaic properties of dye-sensitized solar cells using three-component CNF/TiO
    Lu D; Li J; Lu G; Qin L; Liu D; Sun P; Liu F; Lu G
    J Colloid Interface Sci; 2019 Apr; 542():168-176. PubMed ID: 30738309
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth of oriented single-crystalline rutile TiO(2) nanorods on transparent conducting substrates for dye-sensitized solar cells.
    Liu B; Aydil ES
    J Am Chem Soc; 2009 Mar; 131(11):3985-90. PubMed ID: 19245201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tailored Synthesis of Porous TiO₂ Nanocubes and Nanoparallelepipeds with Exposed {111} Facets and Mesoscopic Void Space: A Superior Candidate for Efficient Dye-Sensitized Solar Cells.
    Amoli V; Bhat S; Maurya A; Banerjee B; Bhaumik A; Sinha AK
    ACS Appl Mater Interfaces; 2015 Dec; 7(47):26022-35. PubMed ID: 26574644
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of Tin Doped TiO
    Wategaonkar SB; Parale VG; Mali SS; Hong CK; Pawar RP; Maldar PS; Moholkar AV; Park HH; Sargar BM; Mane RK
    Materials (Basel); 2021 Oct; 14(21):. PubMed ID: 34771806
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Bi-layer Composite Film Based on TiO
    Zhang P; Hu Z; Wang Y; Qin Y; Li W; Wang J
    Nanomicro Lett; 2016; 8(3):232-239. PubMed ID: 30460282
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoanode based on chain-shaped anatase TiO2 nanorods for high-efficiency dye-sensitized solar cells.
    Rui Y; Li Y; Wang H; Zhang Q
    Chem Asian J; 2012 Oct; 7(10):2313-20. PubMed ID: 22890917
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hierarchical TiO
    He X; Zhang J; Guo Y; Liu J; Li X
    RSC Adv; 2019 Jan; 9(6):3056-3062. PubMed ID: 35518992
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrospun hierarchical TiO2 nanorods with high porosity for efficient dye-sensitized solar cells.
    Chen HY; Zhang TL; Fan J; Kuang DB; Su CY
    ACS Appl Mater Interfaces; 2013 Sep; 5(18):9205-11. PubMed ID: 23962052
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface modified TiO2 nanostructure with 3D urchin-like morphology for dye-sensitized solar cell application.
    Shin SS; Kim DW; Lee S; Cho IS; Kim DH; Park JH; Hong KS
    J Nanosci Nanotechnol; 2012 Feb; 12(2):1305-9. PubMed ID: 22629944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrothermal synthesis of one-dimensional single-crystalline rutile TiO2 nanostructures and their application in dye-sensitized solar cells.
    Jia Q
    J Nanosci Nanotechnol; 2011 Nov; 11(11):9846-50. PubMed ID: 22413307
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of Dye-Sensitized Solar Cells Efficiency Using Mixed-Phase TiO
    Fan YH; Ho CY; Chang YJ
    Scanning; 2017; 2017():9152973. PubMed ID: 29109828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.