These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 31459407)

  • 1. Two-Photon Nanolithography of Tailored Hollow three-dimensional Microdevices for Biosystems.
    Liao C; Anderson W; Antaw F; Trau M
    ACS Omega; 2019 Jan; 4(1):1401-1409. PubMed ID: 31459407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-resolution two-photon polymerization: the most versatile technique for the fabrication of microneedle arrays.
    Faraji Rad Z; Prewett PD; Davies GJ
    Microsyst Nanoeng; 2021; 7():71. PubMed ID: 34567783
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-Photon Polymerization: Functionalized Microstructures, Micro-Resonators, and Bio-Scaffolds.
    Otuka AJG; Tomazio NB; Paula KT; Mendonça CR
    Polymers (Basel); 2021 Jun; 13(12):. PubMed ID: 34207089
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct Laser 3D Printing of Organic Semiconductor Microdevices for Bioelectronics and Biosensors.
    Dadras-Toussi O; Raghunathan V; Majd S; Abidian MR
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():1569-1572. PubMed ID: 36085618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High efficiency integration of three-dimensional functional microdevices inside a microfluidic chip by using femtosecond laser multifoci parallel microfabrication.
    Xu B; Du WQ; Li JW; Hu YL; Yang L; Zhang CC; Li GQ; Lao ZX; Ni JC; Chu JR; Wu D; Liu SL; Sugioka K
    Sci Rep; 2016 Jan; 6():19989. PubMed ID: 26818119
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoresist Development for 3D Printing of Conductive Microstructures via Two-Photon Polymerization.
    Zhou X; Liu X; Gu Z
    Adv Mater; 2024 Oct; ():e2409326. PubMed ID: 39397334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-photon polymerization microfabrication of hydrogels: an advanced 3D printing technology for tissue engineering and drug delivery.
    Xing JF; Zheng ML; Duan XM
    Chem Soc Rev; 2015 Aug; 44(15):5031-9. PubMed ID: 25992492
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct Laser Writing of Tubular Microtowers for 3D Culture of Human Pluripotent Stem Cell-Derived Neuronal Cells.
    Turunen S; Joki T; Hiltunen ML; Ihalainen TO; Narkilahti S; Kellomäki M
    ACS Appl Mater Interfaces; 2017 Aug; 9(31):25717-25730. PubMed ID: 28697300
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Site-Selective Biofunctionalization of 3D Microstructures Via Direct Ink Writing.
    Mathew G; Lemma ED; Fontana D; Zhong C; Rainer A; Sekula-Neuner S; Aghassi-Hagmann J; Hirtz M; Berganza E
    Small; 2024 Sep; ():e2404429. PubMed ID: 39291890
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of High-Aspect-Ratio 3D Hydrogel Microstructures Using Optically Induced Electrokinetics.
    Li Y; Lai SHS; Liu N; Zhang G; Liu L; Lee GB; Li WJ
    Micromachines (Basel); 2016 Apr; 7(4):. PubMed ID: 30407438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A compact LED-based projection microstereolithography for producing 3D microstructures.
    Behroodi E; Latifi H; Najafi F
    Sci Rep; 2019 Dec; 9(1):19692. PubMed ID: 31873101
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Maskless 3D Ablation of Precise Microhole Structures in Plastics Using Femtosecond Laser Pulses.
    Liao C; Anderson W; Antaw F; Trau M
    ACS Appl Mater Interfaces; 2018 Jan; 10(4):4315-4323. PubMed ID: 29313352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-Dimensional Printing of Pure Proteinaceous Microstructures by Femtosecond Laser Multiphoton Cross-Linking.
    Serien D; Sugioka K
    ACS Biomater Sci Eng; 2020 Feb; 6(2):1279-1287. PubMed ID: 33464859
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tethered and Untethered 3D Microactuators Fabricated by Two-Photon Polymerization: A Review.
    Lao Z; Xia N; Wang S; Xu T; Wu X; Zhang L
    Micromachines (Basel); 2021 Apr; 12(4):. PubMed ID: 33924199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generation of Tailored Multi-Material Microstructures Through One-Step Direct Laser Writing.
    Song D; Liu Y; Husari A; Kotz-Helmer F; Tomakidi P; Rapp BE; Rühe J
    Small; 2024 Sep; ():e2405586. PubMed ID: 39235375
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sacrificial Template Synthesis and Properties of 3D Hollow-Silicon Nano- and Microstructures.
    Hölken I; Neubüser G; Postica V; Bumke L; Lupan O; Baum M; Mishra YK; Kienle L; Adelung R
    ACS Appl Mater Interfaces; 2016 Aug; 8(31):20491-8. PubMed ID: 27428091
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated brightfield layerwise evaluation in three-dimensional micropatterning via two-photon polymerization.
    Sun J; Howes AM; Jia S; Burrow JA; Felzenszwalb PF; Dawson MR; Shao C; Toussaint KC
    Opt Express; 2024 Mar; 32(7):12508-12519. PubMed ID: 38571071
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of hollow microtube arrays based on a femtosecond laser double-pulse multiphoton polymerization.
    Gao L; Sun L; Qiu Y; Jiang Y; Luo H; Wang X; Yu H
    Opt Lett; 2023 Nov; 48(21):5495-5498. PubMed ID: 37910686
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-Photon Direct Laser Writing of 3D Scaffolds through C, H-Insertion Crosslinking in a One-Component Material System.
    Song D; Husari A; Kotz-Helmer F; Tomakidi P; Rapp BE; Rühe J
    Small; 2024 Apr; 20(17):e2306682. PubMed ID: 38059850
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Capillary trapping of various nanomaterials on additively manufactured scaffolds for 3D micro-/nanofabrication.
    Lyu X; Zheng Z; Shiva A; Han M; Dayan CB; Zhang M; Sitti M
    Nat Commun; 2024 Aug; 15(1):6693. PubMed ID: 39107326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.