These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 31459412)

  • 1. Origin of High-Efficiency Photoelectrochemical Water Splitting on Hematite/Functional Nanohybrid Metal Oxide Overlayer Photoanode after a Low Temperature Inert Gas Annealing Treatment.
    Ho-Kimura S; Williamson BAD; Sathasivam S; Moniz SJA; He G; Luo W; Scanlon DO; Tang J; Parkin IP
    ACS Omega; 2019 Jan; 4(1):1449-1459. PubMed ID: 31459412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Facile Surface Passivation of Hematite Photoanodes with TiO2 Overlayers for Efficient Solar Water Splitting.
    Ahmed MG; Kretschmer IE; Kandiel TA; Ahmed AY; Rashwan FA; Bahnemann DW
    ACS Appl Mater Interfaces; 2015 Nov; 7(43):24053-62. PubMed ID: 26488924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gradient doping of phosphorus in Fe
    Luo Z; Li C; Liu S; Wang T; Gong J
    Chem Sci; 2017 Jan; 8(1):91-100. PubMed ID: 28451152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Passivation of hematite nanorod photoanodes with a phosphorus overlayer for enhanced photoelectrochemical water oxidation.
    Xiong D; Li W; Wang X; Liu L
    Nanotechnology; 2016 Sep; 27(37):375401. PubMed ID: 27486842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlled Band Offsets in Ultrathin Hematite for Enhancing the Photoelectrochemical Water Splitting Performance of Heterostructured Photoanodes.
    Choi MJ; Kim TL; Choi KS; Sohn W; Lee TH; Lee SA; Park H; Jeong SY; Yang JW; Lee S; Jang HW
    ACS Appl Mater Interfaces; 2022 Feb; 14(6):7788-7795. PubMed ID: 35040620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface Modification of Hematite Photoanodes with CeO
    Ahmed MG; Zhang M; Tay YF; Chiam SY; Wong LH
    ChemSusChem; 2020 Oct; 13(20):5489-5496. PubMed ID: 32776429
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved charge separation efficiency of hematite photoanodes by coating an ultrathin p-type LaFeO
    Fang T; Guo Y; Cai S; Zhang N; Hu Y; Zhang S; Li Z; Zou Z
    Nanotechnology; 2017 Sep; 28(39):394003. PubMed ID: 28879862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface sulfurization activating hematite nanorods for efficient photoelectrochemical water splitting.
    Mao L; Huang YC; Fu Y; Dong CL; Shen S
    Sci Bull (Beijing); 2019 Sep; 64(17):1262-1271. PubMed ID: 36659607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced Charge Separation through ALD-Modified Fe2 O3 /Fe2 TiO5 Nanorod Heterojunction for Photoelectrochemical Water Oxidation.
    Li C; Wang T; Luo Z; Liu S; Gong J
    Small; 2016 Jul; 12(25):3415-22. PubMed ID: 27197643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous Enhancement of Charge Separation and Hole Transportation in a W:α-Fe
    Masoumi Z; Tayebi M; Kolaei M; Tayyebi A; Ryu H; Jang JI; Lee BK
    ACS Appl Mater Interfaces; 2021 Aug; 13(33):39215-39229. PubMed ID: 34374510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interface and surface engineering of hematite photoanode for efficient solar water oxidation.
    Chen X; Fu Y; Hong L; Kong T; Shi X; Wang G; Qu L; Shen S
    J Chem Phys; 2020 Jun; 152(24):244707. PubMed ID: 32610948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrothermal Synthesis in Gap: Conformal Deposition of Textured Hematite Thin Films for Efficient Photoelectrochemical Water Splitting.
    Kong H; Park JS; Kim JH; Hwang S; Yeo J
    ACS Appl Mater Interfaces; 2022 Apr; 14(14):16515-16526. PubMed ID: 35362321
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulating Sn self-doping and boosting solar water splitting performance of hematite nanorod arrays grown on fluorine-doped tin oxide via low-level Hf doping.
    Ma H; Chen W; Fan Q; Ye C; Zheng M; Wang J
    J Colloid Interface Sci; 2022 Nov; 625():585-595. PubMed ID: 35751984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. n-Fe₂O₃ to N⁺-TiO₂Heterojunction Photoanode for Photoelectrochemical Water Oxidation.
    Yang JS; Lin WH; Lin CY; Wang BS; Wu JJ
    ACS Appl Mater Interfaces; 2015 Jun; 7(24):13314-21. PubMed ID: 26027640
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enabling high low-bias performance of Fe
    Xiao J; Li C; Jia X; Du B; Li R; Wang B
    J Colloid Interface Sci; 2023 Mar; 633():555-565. PubMed ID: 36470136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rational Design of CoOOH/α-Fe
    Zheng Y; Wang P; Zhu S; Wu M; Zhang L; Feng C; Li D; Chang Z; Chong R
    Inorg Chem; 2024 Feb; 63(5):2745-2755. PubMed ID: 38241145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of carbon dots - derived underlayer in hematite photoanodes.
    Guo Q; Luo H; Zhang J; Ruan Q; Prakash Periasamy A; Fang Y; Xie Z; Li X; Wang X; Tang J; Briscoe J; Titirici M; Jorge AB
    Nanoscale; 2020 Oct; 12(39):20220-20229. PubMed ID: 33000831
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-Temperature Atomic Layer Deposition of Crystalline and Photoactive Ultrathin Hematite Films for Solar Water Splitting.
    Steier L; Luo J; Schreier M; Mayer MT; Sajavaara T; Grätzel M
    ACS Nano; 2015 Dec; 9(12):11775-83. PubMed ID: 26516784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigating the Role of Substrate Tin Diffusion on Hematite Based Photoelectrochemical Water Splitting System.
    Natarajan K; Bhatt P; Yadav P; Pandey K; Tripathi B; Kumar M
    J Nanosci Nanotechnol; 2018 Mar; 18(3):1856-1863. PubMed ID: 29448672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Constructing inverse opal structured hematite photoanodes via electrochemical process and their application to photoelectrochemical water splitting.
    Shi X; Zhang K; Shin K; Moon JH; Lee TW; Park JH
    Phys Chem Chem Phys; 2013 Jul; 15(28):11717-22. PubMed ID: 23752489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.