These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 31459435)

  • 41. Low-loss metamaterials based on classical electromagnetically induced transparency.
    Tassin P; Zhang L; Koschny T; Economou EN; Soukoulis CM
    Phys Rev Lett; 2009 Feb; 102(5):053901. PubMed ID: 19257513
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Slowing down light using terahertz semiconductor metamaterial for dual-band thermally tunable modulator applications.
    Vafapour Z
    Appl Opt; 2018 Feb; 57(4):722-729. PubMed ID: 29400739
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Polarization-independent and angle-insensitive electromagnetically induced transparent (EIT) metamaterial based on bi-air-hole dielectric resonators.
    Zhu L; Zhao X; Dong L; Guo J; He XJ; Yao ZM
    RSC Adv; 2018 Jul; 8(48):27342-27348. PubMed ID: 35539996
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Electromagnetically induced absorption in a three-resonator metasurface system.
    Zhang X; Xu N; Qu K; Tian Z; Singh R; Han J; Agarwal GS; Zhang W
    Sci Rep; 2015 May; 5():10737. PubMed ID: 26023061
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Subluminal and superluminal terahertz radiation in metamaterials with electromagnetically induced transparency.
    Bai Z; Hang C; Huang G
    Opt Express; 2013 Jul; 21(15):17736-44. PubMed ID: 23938646
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A novel planar metamaterial design for electromagnetically induced transparency and slow light.
    Wang J; Yuan B; Fan C; He J; Ding P; Xue Q; Liang E
    Opt Express; 2013 Oct; 21(21):25159-66. PubMed ID: 24150357
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Plasmonic metamaterial for electromagnetically induced transparency analogue and ultra-high figure of merit sensor.
    Wu D; Liu Y; Yu L; Yu Z; Chen L; Li R; Ma R; Liu C; Zhang J; Ye H
    Sci Rep; 2017 Mar; 7():45210. PubMed ID: 28332629
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Manipulating the plasmon-induced transparency in terahertz metamaterials.
    Li Z; Ma Y; Huang R; Singh R; Gu J; Tian Z; Han J; Zhang W
    Opt Express; 2011 Apr; 19(9):8912-9. PubMed ID: 21643144
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Highly-dispersive transparency at optical frequencies in planar metamaterials based on two-bright-mode coupling.
    Jin XR; Park J; Zheng H; Lee S; Lee Y; Rhee JY; Kim KW; Cheong HS; Jang WH
    Opt Express; 2011 Oct; 19(22):21652-7. PubMed ID: 22109014
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Switching a plasmalike metamaterial via embedded resonant atoms exhibiting electromagnetically induced transparency.
    Chakrabarti S; Ramakrishna SA; Wanare H
    Opt Lett; 2009 Dec; 34(23):3728-30. PubMed ID: 19953176
    [TBL] [Abstract][Full Text] [Related]  

  • 51. High-Q Fano Resonance in Terahertz Frequency Based on an Asymmetric Metamaterial Resonator.
    Xie Q; Dong GX; Wang BX; Huang WQ
    Nanoscale Res Lett; 2018 Sep; 13(1):294. PubMed ID: 30242559
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Independent tuning of bright and dark meta-atoms with phase change materials on EIT metasurfaces.
    Li C; Zhu W; Liu Z; Pan R; Hu S; Du S; Li J; Gu C
    Nanoscale; 2020 May; 12(18):10065-10071. PubMed ID: 32347878
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Multiple electromagnetically induced transparency-like effects of a metal nanostructure induced by a graphene grating deposited on a gallium oxide substrate.
    Wang T; Ng SS
    Appl Opt; 2020 Sep; 59(26):7918-7924. PubMed ID: 32976465
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Electromagnetically induced transparency metamaterial with polarization independence and multi-transmission windows.
    Liu GB; Zhang H; Li HM
    Appl Opt; 2020 Oct; 59(30):9568-9573. PubMed ID: 33104678
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Bidirectional Electromagnetically Induced Transparency Based on Coupling of Magnetic Dipole Modes in Amorphous Silicon Metasurface.
    Liu S; Dong J; Si J; Yang W; Yu X; Zhang J; Deng X
    Nanomaterials (Basel); 2021 Jun; 11(6):. PubMed ID: 34208251
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Numerical investigation of nematic liquid crystals in the THz band based on EIT sensor.
    Wang PY; Jin T; Meng FY; Lyu YL; Erni D; Wu Q; Zhu L
    Opt Express; 2018 Apr; 26(9):12318-12329. PubMed ID: 29716143
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Broadband plasmon-induced transparency in terahertz metamaterials via constructive interference of electric and magnetic couplings.
    Wan M; Song Y; Zhang L; Zhou F
    Opt Express; 2015 Oct; 23(21):27361-8. PubMed ID: 26480398
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Planar designs for electromagnetically induced transparency in metamaterials.
    Tassin P; Zhang L; Koschny T; Economou EN; Soukoulis CM
    Opt Express; 2009 Mar; 17(7):5595-605. PubMed ID: 19333327
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Broadband slow light metamaterial based on a double-continuum Fano resonance.
    Wu C; Khanikaev AB; Shvets G
    Phys Rev Lett; 2011 Mar; 106(10):107403. PubMed ID: 21469834
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Analog electromagnetically induced transparency for circularly polarized wave using three-dimensional chiral metamaterials.
    Lin H; Yang D; Han S; Liu Y; Yang H
    Opt Express; 2016 Dec; 24(26):30068-30078. PubMed ID: 28059285
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.