These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 31459435)

  • 61. Electromagnetically induced transparency (EIT)-like transmission in side-coupled complementary split-ring resonators.
    Guo Y; Yan L; Pan W; Luo B; Wen K; Guo Z; Luo X
    Opt Express; 2012 Oct; 20(22):24348-55. PubMed ID: 23187197
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Dynamically controllable terahertz metamaterial based on annealed and unannealed BiFeO
    Yue J; Ling F; Yao J
    Appl Opt; 2020 Nov; 59(31):9855-9860. PubMed ID: 33175825
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Plasmonically induced transparent magnetic resonance in a metallic metamaterial composed of asymmetric double bars.
    Dong ZG; Liu H; Xu MX; Li T; Wang SM; Zhu SN; Zhang X
    Opt Express; 2010 Aug; 18(17):18229-34. PubMed ID: 20721213
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Electromagnetically induced transparency-like effect in a two-bus waveguides coupled microdisk resonator.
    Huang Q; Shu Z; Song G; Chen J; Xia J; Yu J
    Opt Express; 2014 Feb; 22(3):3219-27. PubMed ID: 24663613
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Realization of switchable EIT metamaterial by exploiting fluidity of liquid metal.
    Xu J; Fan Y; Yang R; Fu Q; Zhang F
    Opt Express; 2019 Feb; 27(3):2837-2843. PubMed ID: 30732315
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Acoustic analog of electromagnetically induced transparency in periodic arrays of square rods.
    Liu F; Ke M; Zhang A; Wen W; Shi J; Liu Z; Sheng P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 2):026601. PubMed ID: 20866931
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Magnetic annihilation of the dark mode in a strongly coupled bright-dark terahertz metamaterial.
    Manjappa M; Turaga SP; Srivastava YK; Bettiol AA; Singh R
    Opt Lett; 2017 Jun; 42(11):2106-2109. PubMed ID: 28569856
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Electromagnetically induced transparency in hybrid plasmonic-dielectric system.
    Tang B; Dai L; Jiang C
    Opt Express; 2011 Jan; 19(2):628-37. PubMed ID: 21263602
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Plasmon-induced transparency by detuned magnetic atoms in trirod metamaterials.
    Ding P; Fan C; Cheng Y; Liang E; Xue Q
    Appl Opt; 2012 Apr; 51(12):1879-85. PubMed ID: 22534892
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Tailoring the plasmon-induced transparency resonances in terahertz metamaterials.
    Liu M; Tian Z; Zhang X; Gu J; Ouyang C; Han J; Zhang W
    Opt Express; 2017 Aug; 25(17):19844-19855. PubMed ID: 29041671
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial.
    Kurter C; Tassin P; Zhang L; Koschny T; Zhuravel AP; Ustinov AV; Anlage SM; Soukoulis CM
    Phys Rev Lett; 2011 Jul; 107(4):043901. PubMed ID: 21867006
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Tunable control of electromagnetically induced transparency analogue in a compact graphene-based waveguide.
    Wang L; Li W; Jiang X
    Opt Lett; 2015 May; 40(10):2325-8. PubMed ID: 26393730
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Enhancement of electromagnetically induced transparency in metamaterials using long range coupling mediated by a hyperbolic material.
    Guo Z; Jiang H; Li Y; Chen H; Agarwal GS
    Opt Express; 2018 Jan; 26(2):627-641. PubMed ID: 29401945
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Electromagnetically Induced Transparency (EIT) Like Transmission Based on 3 × 3 Cascaded Multimode Interference Resonators.
    Le TT
    Micromachines (Basel); 2018 Aug; 9(8):. PubMed ID: 30424350
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Broadband Anisotropy in Terahertz Metamaterial With Single-Layer Gap Ring Array.
    Xia L; Cui HL; Zhang M; Dang S; Du C
    Materials (Basel); 2019 Jul; 12(14):. PubMed ID: 31337026
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Three-stimulus control ultrasensitive Dirac point modulator using an electromagnetically induced transparency-like terahertz metasurface with graphene.
    Zhang Y; Qiu F; Liang L; Yao H; Yan X; Liu W; Huang C; Yao J
    Opt Express; 2022 Jul; 30(14):24703-24715. PubMed ID: 36237018
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Slow-light analysis based on tunable plasmon-induced transparency in patterned black phosphorus metamaterial.
    Wu K; Li H; Liu C; Xiong C; Ruan B; Li M; Gao E; Zhang B
    J Opt Soc Am A Opt Image Sci Vis; 2021 Mar; 38(3):412-418. PubMed ID: 33690472
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Electromagnetically induced transparency-like metamaterials for detection of lung cancer cells.
    Yang M; Liang L; Zhang Z; Xin Y; Wei D; Song X; Zhang H; Lu Y; Wang M; Zhang M; Wang T; Yao J
    Opt Express; 2019 Jul; 27(14):19520-19529. PubMed ID: 31503709
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Tunable quad-band transmission response, based on single-layer metamaterials.
    Hwang JS; Kim YJ; Yoo YJ; Kim KW; Rhee JY; Chen LY; Li SR; Guo XW; Lee YP
    Opt Express; 2018 Nov; 26(24):31607-31616. PubMed ID: 30650744
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Active manipulation of plasmonic electromagnetically-induced transparency based on magnetic plasmon resonance.
    Lu Y; Rhee JY; Jang WH; Lee YP
    Opt Express; 2010 Sep; 18(20):20912-7. PubMed ID: 20940986
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.