BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 31459462)

  • 1. Synthesis and Reactivity of a Bis-Strained Alkyne Derived from 1,1'-Biphenyl-2,2',6,6'-tetrol.
    Knighton RC; Sharma K; Robertson NS; Spring DR; Wills M
    ACS Omega; 2019 Jan; 4(1):2160-2167. PubMed ID: 31459462
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strain-promoted azide-alkyne cycloaddition for protein-protein coupling in the formation of a bis-hemoglobin as a copper-free oxygen carrier.
    Singh S; Dubinsky-Davidchik IS; Kluger R
    Org Biomol Chem; 2016 Oct; 14(42):10011-10017. PubMed ID: 27714247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cycloaddition reactivity studies of first-row transition metal-azide complexes and alkynes: an inorganic click reaction for metalloenzyme inhibitor synthesis.
    Evangelio E; Rath NP; Mirica LM
    Dalton Trans; 2012 Jul; 41(26):8010-21. PubMed ID: 22517535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Water-soluble, stable and azide-reactive strained dialkynes for biocompatible double strain-promoted click chemistry.
    Sharma K; Strizhak AV; Fowler E; Wang X; Xu W; Hatt Jensen C; Wu Y; Sore HF; Lau YH; Hyvönen M; Itzhaki LS; Spring DR
    Org Biomol Chem; 2019 Aug; 17(34):8014-8018. PubMed ID: 31418442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strain-promoted azide-alkyne cycloaddition with ruthenium(II)-azido complexes.
    Cruchter T; Harms K; Meggers E
    Chemistry; 2013 Dec; 19(49):16682-9. PubMed ID: 24173767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strain-Promoted Reactivity of Alkyne-Containing Cycloparaphenylenes.
    Schaub TA; Margraf JT; Zakharov L; Reuter K; Jasti R
    Angew Chem Int Ed Engl; 2018 Dec; 57(50):16348-16353. PubMed ID: 30324747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functionalized Double Strain-Promoted Stapled Peptides for Inhibiting the p53-MDM2 Interaction.
    Sharma K; Strizhak AV; Fowler E; Xu W; Chappell B; Sore HF; Galloway WRJD; Grayson MN; Lau YH; Itzhaki LS; Spring DR
    ACS Omega; 2020 Jan; 5(2):1157-1169. PubMed ID: 31984273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ruthenium-catalyzed azide-alkyne cycloaddition: scope and mechanism.
    Boren BC; Narayan S; Rasmussen LK; Zhang L; Zhao H; Lin Z; Jia G; Fokin VV
    J Am Chem Soc; 2008 Jul; 130(28):8923-30. PubMed ID: 18570425
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strategy and Effects of Polyproline Peptide Stapling by Copper(I)-Catalyzed Alkyne-Azide Cycloaddition Reaction.
    Tseng WH; Li MC; Horng JC; Wang SK
    Chembiochem; 2019 Jan; 20(2):153-158. PubMed ID: 30427573
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facile synthesis of nitrogen tetradentate ligands and their applications in Cu(I)-catalyzed N-arylation and azide-alkyne cycloaddition.
    Li F; Hor TS
    Chemistry; 2009 Oct; 15(40):10585-92. PubMed ID: 19739212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural Determinants of Alkyne Reactivity in Copper-Catalyzed Azide-Alkyne Cycloadditions.
    Zhang X; Liu P; Zhu L
    Molecules; 2016 Dec; 21(12):. PubMed ID: 27941684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strain-Promoted 1,3-Dithiolium-4-olates-Alkyne Cycloaddition.
    Kumar RA; Pattanayak MR; Yen-Pon E; Eliyan J; Porte K; Bernard S; Riomet M; Thuéry P; Audisio D; Taran F
    Angew Chem Int Ed Engl; 2019 Oct; 58(41):14544-14548. PubMed ID: 31368231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemoselective Nitrile Oxide-Alkyne 1,3-Dipolar Cycloaddition Reactions from Nitroalkane-Tethered Peptides.
    Reja RM; Sunny S; Gopi HN
    Org Lett; 2017 Jul; 19(13):3572-3575. PubMed ID: 28631487
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enantioselective copper-catalyzed azide-alkyne click cycloaddition to desymmetrization of maleimide-based bis(alkynes).
    Song T; Li L; Zhou W; Zheng ZJ; Deng Y; Xu Z; Xu LW
    Chemistry; 2015 Jan; 21(2):554-8. PubMed ID: 25388524
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A highly active and magnetically recoverable tris(triazolyl)-Cu(I) catalyst for alkyne-azide cycloaddition reactions.
    Wang D; Etienne L; Echeverria M; Moya S; Astruc D
    Chemistry; 2014 Apr; 20(14):4047-54. PubMed ID: 24574335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accelerating Strain-Promoted Azide-Alkyne Cycloaddition Using Micellar Catalysis.
    Anderton GI; Bangerter AS; Davis TC; Feng Z; Furtak AJ; Larsen JO; Scroggin TL; Heemstra JM
    Bioconjug Chem; 2015 Aug; 26(8):1687-91. PubMed ID: 26056848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cucurbit[6]uril-Promoted Click Chemistry for Protein Modification.
    Finbloom JA; Han K; Slack CC; Furst AL; Francis MB
    J Am Chem Soc; 2017 Jul; 139(28):9691-9697. PubMed ID: 28650616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical studies on the regioselectivity of iridium-catalyzed 1,3-dipolar azide-alkyne cycloaddition reactions.
    Luo Q; Jia G; Sun J; Lin Z
    J Org Chem; 2014 Dec; 79(24):11970-80. PubMed ID: 25222638
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Versatile strained alkyne modified water-soluble AuNPs for interfacial strain promoted azide-alkyne cycloaddition (I-SPAAC).
    Gobbo P; Mossman Z; Nazemi A; Niaux A; Biesinger MC; Gillies ER; Workentin MS
    J Mater Chem B; 2014 Apr; 2(13):1764-1769. PubMed ID: 32261513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A supported copper hydroxide on titanium oxide as an efficient reusable heterogeneous catalyst for 1,3-dipolar cycloaddition of organic azides to terminal alkynes.
    Yamaguchi K; Oishi T; Katayama T; Mizuno N
    Chemistry; 2009 Oct; 15(40):10464-72. PubMed ID: 19718725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.