These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 31459567)

  • 1. Green Approach for Metal Oxide Deposition at an Air-Liquid-Solid Triphase Interface with Enhanced Photocatalytic Activity.
    Zhu A; Zhang J; Guan F; Tang H; Feng X
    ACS Omega; 2019 Feb; 4(2):3534-3538. PubMed ID: 31459567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced Photocatalytic Reaction at Air-Liquid-Solid Joint Interfaces.
    Sheng X; Liu Z; Zeng R; Chen L; Feng X; Jiang L
    J Am Chem Soc; 2017 Sep; 139(36):12402-12405. PubMed ID: 28853557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient Hydrogen Peroxide Generation Utilizing Photocatalytic Oxygen Reduction at a Triphase Interface.
    Liu Z; Sheng X; Wang D; Feng X
    iScience; 2019 Jul; 17():67-73. PubMed ID: 31255984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An enhanced enzymatic reaction using a triphase system based on superhydrophobic mesoporous nanowire arrays.
    Guan F; Zhang J; Tang H; Chen L; Feng X
    Nanoscale Horiz; 2019 Jan; 4(1):231-235. PubMed ID: 32254161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photocatalytic H
    Yan S; Li Y; Yang X; Jia X; Xu J; Song H
    Adv Mater; 2024 Mar; 36(9):e2307967. PubMed ID: 37910074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced catalytic reaction at an air-liquid-solid triphase interface.
    Chen L; Feng X
    Chem Sci; 2020 Mar; 11(12):3124-3131. PubMed ID: 34122816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robust electrochemical metal oxide deposition using an electrode with a superhydrophobic surface.
    Zhang J; Sheng X; Cheng X; Chen L; Jin J; Feng X
    Nanoscale; 2017 Jan; 9(1):87-90. PubMed ID: 27929194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increasing the Efficiency of Photocatalytic Reactions via Surface Microenvironment Engineering.
    Zhou H; Sheng X; Xiao J; Ding Z; Wang D; Zhang X; Liu J; Wu R; Feng X; Jiang L
    J Am Chem Soc; 2020 Feb; 142(6):2738-2743. PubMed ID: 31984729
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering a Hollow Carbon Sphere-Based Triphase Microenvironment for Enhanced Enzymatic Reaction Kinetics and Bioassay Performance.
    Li X; Wang D; Ding Z; Chen X; Chen L; Ni W; Feng X
    Small; 2023 Oct; 19(43):e2302634. PubMed ID: 37376867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Performance Photoelectrochemical Enzymatic Bioanalysis Based on a 3D Porous Cu
    Cheng H; Wang D; Chen L; Ding Z; Feng X
    Langmuir; 2022 Dec; 38(50):15796-15803. PubMed ID: 36469434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Utilization of Peroxide Reduction Reaction at Air-Liquid-Solid Joint Interfaces for Reliable Sensing System Construction.
    Song Z; Xu C; Sheng X; Feng X; Jiang L
    Adv Mater; 2018 Feb; 30(6):. PubMed ID: 29280206
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superhydrophobicity-mediated electrochemical reaction along the solid-liquid-gas triphase interface: edge-growth of gold architectures.
    Wu Y; Liu K; Su B; Jiang L
    Adv Mater; 2014 Feb; 26(7):1124-8. PubMed ID: 24243745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Significant enhancement in photocatalytic hydrogen evolution from water using a MoS2 nanosheet-coated ZnO heterostructure photocatalyst.
    Yuan YJ; Wang F; Hu B; Lu HW; Yu ZT; Zou ZG
    Dalton Trans; 2015 Jun; 44(24):10997-1003. PubMed ID: 25989095
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flexible triphase enzyme electrode based on hydrophobic porous PVDF membrane for high-performance bioassays.
    Wang H; Zhang J; Wang D; Wang Z; Chen Y; Feng X
    Biosens Bioelectron; 2021 Jul; 183():113201. PubMed ID: 33812291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Promoting Photodegradation Efficiency via a Heterojunction Photocatalyst Combining with Oxygen Direct and Fast Diffusion from the Gas Phase to Active Catalytic Sites.
    Shao F; Mi L; Tian Z; Zheng C; Zhang Y; Li Q; Liu S
    ACS Appl Mater Interfaces; 2019 Nov; 11(47):44922-44930. PubMed ID: 31697058
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laser-Induced Graphene Arrays-Based Three-Phase Interface Enzyme Electrode for Reliable Bioassays.
    Zhang M; Zhang J; Ding Z; Wang H; Huang L; Feng X
    Biomimetics (Basel); 2023 Jan; 8(1):. PubMed ID: 36648812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical and photocatalytic properties of single crystalline ZnO at the air-liquid interface by an aminolytic reaction.
    Vaishampayan MV; Mulla IS; Joshi SS
    Langmuir; 2011 Oct; 27(20):12751-9. PubMed ID: 21888345
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photocatalytic oxidation of propylene with molecular oxygen over highly dispersed titanium, vanadium, and chromium oxides on silica.
    Amano F; Yamaguchi T; Tanaka T
    J Phys Chem B; 2006 Jan; 110(1):281-8. PubMed ID: 16471534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-Phases Interface Induced Local Alkalinity Generation Enables Electrocatalytic Glucose Oxidation in Neutral Electrolyte.
    Chen Y; Zhang J; Ding Z; Chen L; Wang H; Zhang M; Feng X
    Front Bioeng Biotechnol; 2022; 10():909187. PubMed ID: 35573243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly Boosted Oxygen Reduction Reaction Activity by Tuning the Underwater Wetting State of the Superhydrophobic Electrode.
    Wang P; Hayashi T; Meng Q; Wang Q; Liu H; Hashimoto K; Jiang L
    Small; 2017 Jan; 13(4):. PubMed ID: 27510500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.