These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 31459625)

  • 21. Orthogonal colloidal quantum dot inks enable efficient multilayer optoelectronic devices.
    Lee S; Choi MJ; Sharma G; Biondi M; Chen B; Baek SW; Najarian AM; Vafaie M; Wicks J; Sagar LK; Hoogland S; de Arquer FPG; Voznyy O; Sargent EH
    Nat Commun; 2020 Sep; 11(1):4814. PubMed ID: 32968078
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Low-Thermal-Budget Photonic Processing of Highly Conductive Cu Interconnects Based on CuO Nanoinks: Potential for Flexible Printed Electronics.
    Rager MS; Aytug T; Veith GM; Joshi P
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):2441-8. PubMed ID: 26720684
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Supersonically Spray-Coated Colloidal Quantum Dot Ink Solar Cells.
    Choi H; Lee JG; Mai XD; Beard MC; Yoon SS; Jeong S
    Sci Rep; 2017 Apr; 7(1):622. PubMed ID: 28377569
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Printed, sub-3V digital circuits on plastic from aqueous carbon nanotube inks.
    Ha M; Xia Y; Green AA; Zhang W; Renn MJ; Kim CH; Hersam MC; Frisbie CD
    ACS Nano; 2010 Aug; 4(8):4388-95. PubMed ID: 20583780
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Emerging Carbon and Post-Carbon Nanomaterial Inks for Printed Electronics.
    Secor EB; Hersam MC
    J Phys Chem Lett; 2015 Feb; 6(4):620-6. PubMed ID: 26262476
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nanoparticle composites for printed electronics.
    Männl U; van den Berg C; Magunje B; Härting M; Britton DT; Jones S; van Staden MJ; Scriba MR
    Nanotechnology; 2014 Mar; 25(9):094004. PubMed ID: 24521927
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inkjet printed, high mobility inorganic-oxide field effect transistors processed at room temperature.
    Dasgupta S; Kruk R; Mechau N; Hahn H
    ACS Nano; 2011 Dec; 5(12):9628-38. PubMed ID: 22077094
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Screen-Printing of a Highly Conductive Graphene Ink for Flexible Printed Electronics.
    He P; Cao J; Ding H; Liu C; Neilson J; Li Z; Kinloch IA; Derby B
    ACS Appl Mater Interfaces; 2019 Sep; 11(35):32225-32234. PubMed ID: 31390171
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inorganic nanomaterials for printed electronics: a review.
    Wu W
    Nanoscale; 2017 Jun; 9(22):7342-7372. PubMed ID: 28548146
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dewetting of conducting polymer inkjet droplets on patterned surfaces.
    Wang JZ; Zheng ZH; Li HW; Huck WT; Sirringhaus H
    Nat Mater; 2004 Mar; 3(3):171-6. PubMed ID: 14991019
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Functional Inks for Printable Energy Storage Applications based on 2 D Materials.
    Wang L; Chen S; Shu T; Hu X
    ChemSusChem; 2020 Mar; 13(6):1330-1353. PubMed ID: 31373172
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Solar cells based on inks of n-type colloidal quantum dots.
    Ning Z; Dong H; Zhang Q; Voznyy O; Sargent EH
    ACS Nano; 2014 Oct; 8(10):10321-7. PubMed ID: 25225786
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High-Purity Semiconducting Single-Walled Carbon Nanotubes: A Key Enabling Material in Emerging Electronics.
    Lefebvre J; Ding J; Li Z; Finnie P; Lopinski G; Malenfant PRL
    Acc Chem Res; 2017 Oct; 50(10):2479-2486. PubMed ID: 28902990
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fabrication of Conductive Copper Films on Flexible Polymer Substrates by Low-Temperature Sintering of Composite Cu Ink in Air.
    Kanzaki M; Kawaguchi Y; Kawasaki H
    ACS Appl Mater Interfaces; 2017 Jun; 9(24):20852-20858. PubMed ID: 28574247
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of Substrate Surface Morphology on the Performance of Graphene Inks for Flexible Electronics.
    Ruhkopf J; Sawallich S; Nagel M; Otto M; Plachetka U; Kremers T; Schnakenberg U; Kataria S; Lemme MC
    ACS Appl Electron Mater; 2019 Sep; 1(9):1909-1916. PubMed ID: 35274105
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enabling Ambipolar to Heavy n-Type Transport in PbS Quantum Dot Solids through Doping with Organic Molecules.
    Nugraha MI; Kumagai S; Watanabe S; Sytnyk M; Heiss W; Loi MA; Takeya J
    ACS Appl Mater Interfaces; 2017 May; 9(21):18039-18045. PubMed ID: 28472887
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Printable elastic conductors with a high conductivity for electronic textile applications.
    Matsuhisa N; Kaltenbrunner M; Yokota T; Jinno H; Kuribara K; Sekitani T; Someya T
    Nat Commun; 2015 Jun; 6():7461. PubMed ID: 26109453
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thermal Dynamics Effects using Pulse-Shaping Laser Sintering of Printed Silver Inks.
    Bolduc M; Trudeau C; Beaupré P; Cloutier SG; Galarneau P
    Sci Rep; 2018 Jan; 8(1):1418. PubMed ID: 29362423
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Graphene-Ag nanohexagonal platelets-based ink with high electrical properties at low sintering temperatures.
    Liu P; Ma J; Deng S; Zeng K; Deng D; Xie W; Lu A
    Nanotechnology; 2016 Sep; 27(38):385603. PubMed ID: 27518607
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A new switching device for printed electronics: inkjet-printed microelectromechanical relay.
    Park ES; Chen Y; Liu TJ; Subramanian V
    Nano Lett; 2013; 13(11):5355-60. PubMed ID: 24090078
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.