These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 3145973)

  • 1. [A new electron transfer system functioned as drug reducing enzyme system].
    Kitamura S
    Yakugaku Zasshi; 1988 Apr; 108(4):296-309. PubMed ID: 3145973
    [No Abstract]   [Full Text] [Related]  

  • 2. A sulfoxide-reducing enzyme system consisting of aldehyde oxidase and xanthine oxidase--a new electron transfer system.
    Kitamura S; Tatsumi K
    Chem Pharm Bull (Tokyo); 1983 Feb; 31(2):760-3. PubMed ID: 6688381
    [No Abstract]   [Full Text] [Related]  

  • 3. NAD (P) H-dependent reduction of nicotinamide N-oxide by an unique enzyme system consisting of liver microsomal NADPH-cytochrome C reductase and cytosolic aldehyde oxidase.
    Kitamura S; Wada Y; Tatsumi K
    Biochem Biophys Res Commun; 1984 Dec; 125(3):1117-22. PubMed ID: 6240269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sulfoxide reductase activity of liver aldehyde oxidase.
    Tatsumi K; Kitamura S; Yamada H
    Biochim Biophys Acta; 1983 Sep; 747(1-2):86-92. PubMed ID: 6688361
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of iron chelates in hydroxyl radical production by rat liver microsomes, NADPH-cytochrome P-450 reductase and xanthine oxidase.
    Winston GW; Feierman DE; Cederbaum AI
    Arch Biochem Biophys; 1984 Jul; 232(1):378-90. PubMed ID: 6331321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Involvement of liver aldehyde oxidase in conversion of N-hydroxyurethane to urethane.
    Sugihara K; Kitamura S; Tatsumi K
    J Pharmacobiodyn; 1983 Sep; 6(9):677-83. PubMed ID: 6689178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Respective role of superoxide and hydroxyl radical in the activity of the reconstituted microsomal ethanol-oxidizing system.
    Ohnishi K; Lieber CS
    Arch Biochem Biophys; 1978 Dec; 191(2):798-803. PubMed ID: 217312
    [No Abstract]   [Full Text] [Related]  

  • 8. Superoxide generation by NADPH-cytochrome P-450 reductase: the effect of iron chelators and the role of superoxide in microsomal lipid peroxidation.
    Morehouse LA; Thomas CE; Aust SD
    Arch Biochem Biophys; 1984 Jul; 232(1):366-77. PubMed ID: 6331320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzymology of the reductive bioactivation of SR 4233. A novel benzotriazine di-N-oxide hypoxic cell cytotoxin.
    Walton MI; Workman P
    Biochem Pharmacol; 1990 Jun; 39(11):1735-42. PubMed ID: 2344370
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduction of tertiary amine N-oxides by liver preparations: function of aldehyde oxidase as a major N-oxide reductase.
    Kitamura S; Tatsumi K
    Biochem Biophys Res Commun; 1984 Jun; 121(3):749-54. PubMed ID: 6743317
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro oxidation of famciclovir and 6-deoxypenciclovir by aldehyde oxidase from human, guinea pig, rabbit, and rat liver.
    Rashidi MR; Smith JA; Clarke SE; Beedham C
    Drug Metab Dispos; 1997 Jul; 25(7):805-13. PubMed ID: 9224775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Involvement of liver aldehyde oxidase in sulfoxide reduction.
    Tatsumi K; Kitamura S; Yamada H
    Chem Pharm Bull (Tokyo); 1982 Dec; 30(12):4585-8. PubMed ID: 7168878
    [No Abstract]   [Full Text] [Related]  

  • 13. Further studies of sulfoxide-reducing enzyme system.
    Kitamura S; Tatsumi K; Hirata Y; Yoshimura H
    J Pharmacobiodyn; 1981 Jul; 4(7):528-33. PubMed ID: 6795335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tropylium tetrafluoroborate, a novel substrate for aldehyde oxidase.
    Banks RB; Barnett SD
    Biochem Biophys Res Commun; 1986 Oct; 140(2):609-15. PubMed ID: 3778470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitroimidazole bioreductive metabolism. Quantitation and characterisation of mouse tissue benznidazole nitroreductases in vivo and in vitro.
    Walton MI; Workman P
    Biochem Pharmacol; 1987 Mar; 36(6):887-96. PubMed ID: 3105539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. N- and alpha C-oxidation of alpha-alkyl substituted phenethylamines by a reconstituted cytochrome P-450 oxidase system from rabbit liver.
    Duncan JD; Hallström G; Florence VM; Cho AK; Lindeke B
    Acta Pharm Suec; 1983; 20(5):331-40. PubMed ID: 6421086
    [No Abstract]   [Full Text] [Related]  

  • 17. Oxidation of selected pteridine derivatives by mamalian liver xanthine oxidase and aldehyde oxidase.
    Hodnett CN; McCormack JJ; Sabean JA
    J Pharm Sci; 1976 Aug; 65(8):1150-4. PubMed ID: 185353
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitroreductase activity of mammalian liver aldehyde oxidase.
    Wolpert MK; Althaus JR; Johns DG
    J Pharmacol Exp Ther; 1973 May; 185(2):202-13. PubMed ID: 4145043
    [No Abstract]   [Full Text] [Related]  

  • 19. The multiple effects of ethylenediaminetetraacetate in several model lipid peroxidation systems.
    Tien M; Morehouse LA; Bucher JR; Aust SD
    Arch Biochem Biophys; 1982 Oct; 218(2):450-8. PubMed ID: 6818905
    [No Abstract]   [Full Text] [Related]  

  • 20. Oxidation of 7-aminothiadiazolo(3,4-d)pyrimidines and 7-aminofurazano(3,4-d)pyrimidines by xanthine oxidase and aldehyde oxidase.
    McCormack JJ; Taylor EC
    Biochem Pharmacol; 1975 Sep; 24(17):1636-9. PubMed ID: 172085
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.