These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 3145973)

  • 21. The molybdoenzymes xanthine oxidase and aldehyde oxidase contain fast- and slow-DTNB reacting sulphydryl groups.
    Cabré F; Cascante M; Canela EI
    J Protein Chem; 1992 Oct; 11(5):547-51. PubMed ID: 1449601
    [TBL] [Abstract][Full Text] [Related]  

  • 22. One-electron reductive bioactivation of 2,3,5,6-tetramethylbenzoquinone by cytochrome P450.
    Goeptar AR; te Koppele JM; van Maanen JM; Zoetemelk CE; Vermeulen NP
    Biochem Pharmacol; 1992 Jan; 43(2):343-52. PubMed ID: 1310854
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sulfoxide reduction catalyzed by guinea pig liver aldehyde oxidase in combination with one-electron reducing flavoenzymes.
    Yoshihara S; Tatsumi K
    J Pharmacobiodyn; 1985 Dec; 8(12):996-1005. PubMed ID: 3834063
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Interaction of various acceptors with oxygen anion-radicals in liver microsomes].
    Mishin VM; Pokrovskiĭ AG; Liakhovich VV
    Biokhimiia; 1976 May; 41(5):763-7. PubMed ID: 828858
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Epoxide reductase activity of mammalian liver cytosols and aldehyde oxidase.
    Hirao Y; Kitamura S; Tatsumi K
    Carcinogenesis; 1994 Apr; 15(4):739-43. PubMed ID: 8149489
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Studies on the microsomal mixed-function oxidase system: mechanism of action of hepatic NADPH-cytochrome P-450 reductase.
    Iyanagi T; Makino R; Anan FK
    Biochemistry; 1981 Mar; 20(7):1722-30. PubMed ID: 6784758
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nicotinamide adenine dinucleotide (NAD)-dependent oxidation of nicotine-delta 1'(5')-iminium ion to cotinine by rabbit liver microsomes.
    Obach RS; Van Vunakis H
    Biochem Pharmacol; 1990 Jan; 39(1):R1-4. PubMed ID: 2297350
    [No Abstract]   [Full Text] [Related]  

  • 28. Regulative mechanisms in NADH- and NADPH-supported N-oxidation of 4-chloroaniline catalyzed by cytochrome b5-enriched rabbit liver microsomal fractions.
    Golly I; Hlavica P
    Biochim Biophys Acta; 1987 Jun; 913(2):219-27. PubMed ID: 3109485
    [TBL] [Abstract][Full Text] [Related]  

  • 29. One-electron reduction of mitomycin c by rat liver: role of cytochrome P-450 and NADPH-cytochrome P-450 reductase.
    Vromans RM; van de Straat R; Groeneveld M; Vermeulen NP
    Xenobiotica; 1990 Sep; 20(9):967-78. PubMed ID: 2122607
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chromate reduction by rabbit liver aldehyde oxidase.
    Banks RB; Cooke RT
    Biochem Biophys Res Commun; 1986 May; 137(1):8-14. PubMed ID: 2941018
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effects of incorporation into microsomes of purified NADPH-cytochrome c (P-450) reductase on drug oxidations.
    Kitada M; Kitagawa H; Kamataki T
    Biochem Pharmacol; 1979 Sep; 28(17):2670-3. PubMed ID: 229859
    [No Abstract]   [Full Text] [Related]  

  • 32. Inhibition of the oxidation of hydroxyl radical scavenging agents after alkaline phosphatase treatment of rat liver microsomes.
    Puntarulo S; Cederbaum AI
    Biochim Biophys Acta; 1991 May; 1074(1):12-8. PubMed ID: 1904277
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 1-substituted phthalazines as probes of the substrate-binding site of mammalian molybdenum hydroxylases.
    Beedham C; Bruce SE; Critchley DJ; Rance DJ
    Biochem Pharmacol; 1990 Apr; 39(7):1213-21. PubMed ID: 2322306
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tissue distribution of the molybdenum hydroxylases, aldehyde oxidase and xanthine oxidase, in male and female guinea pigs.
    Beedham C; Bruce SE; Rance DJ
    Eur J Drug Metab Pharmacokinet; 1987; 12(4):303-6. PubMed ID: 3449390
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Kinetic and inhibition studies on reduction of diphenyl sulfoxide by guinea pig liver aldehyde oxidase.
    Yoshihara S; Tatsumi K
    Arch Biochem Biophys; 1986 Aug; 249(1):8-14. PubMed ID: 3755579
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Studies on three microsomal electron transfer enzyme systems. Specificity of electron flow pathways.
    Jansson I; Schenkman JB
    Arch Biochem Biophys; 1977 Jan; 178(1):89-107. PubMed ID: 13723
    [No Abstract]   [Full Text] [Related]  

  • 37. Properties of the prosthetic groups of rabbit liver aldehyde oxidase: a comparison of molybdenum hydroxylase enzymes.
    Barber MJ; Coughlan MP; Rajagopalan KV; Siegel LM
    Biochemistry; 1982 Jul; 21(15):3561-8. PubMed ID: 6288079
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Involvement of liver aldehyde oxidase in the reduction of nicotinamide N-oxide.
    Kitamura S; Tatsumi K
    Biochem Biophys Res Commun; 1984 Apr; 120(2):602-6. PubMed ID: 6233971
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Oxidation of fatty-aromatic aldehydes in liver tissues].
    Kholmina GV; Gorkin VZ
    Vopr Med Khim; 1979; 25(3):322-8. PubMed ID: 36712
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Purification and properties of cytochrome P-450 and NADPH-cytochrome c (P-450) reductase from human liver microsomes.
    Kamataki T; Sugiura M; Yamazoe Y; Kato R
    Biochem Pharmacol; 1979 Jul; 28(13):1993-2000. PubMed ID: 113009
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.