These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 31459731)

  • 21. Bimetallic Gold-Silver Nanoparticles Supported on Zeolitic Imidazolate Framework-8 as Highly Active Heterogenous Catalysts for Selective Oxidation of Benzyl Alcohol into Benzaldehyde.
    Liu L; Zhou X; Yan Y; Zhou J; Zhang W; Tai X
    Polymers (Basel); 2018 Oct; 10(10):. PubMed ID: 30961014
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CeO2-based catalysts with engineered morphologies for soot oxidation to enhance soot-catalyst contact.
    Miceli P; Bensaid S; Russo N; Fino D
    Nanoscale Res Lett; 2014; 9(1):254. PubMed ID: 24940178
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Environmental Transmission Electron Microscopy Study of Diesel Carbon Soot Combustion under Simulated Catalytic-Reaction Conditions.
    Mori K; Watanabe K; Sato T; Yamashita H
    Chemphyschem; 2015 May; 16(7):1347-51. PubMed ID: 25603930
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nanowire Morphology of Mono- and Bidoped α-MnO
    Jampaiah D; Velisoju VK; Venkataswamy P; Coyle VE; Nafady A; Reddy BM; Bhargava SK
    ACS Appl Mater Interfaces; 2017 Sep; 9(38):32652-32666. PubMed ID: 28862428
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Soot Combustion over Cu-Co Spinel Catalysts: The Intrinsic Effects of Precursors on Catalytic Activity.
    Zhou C; Zhu X; Zhang F; Li X; Chen G; Zhou Z; Yang G
    Int J Environ Res Public Health; 2022 Nov; 19(22):. PubMed ID: 36429456
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Understanding the difference in oxidative properties between flame and diesel soot nanoparticles: the role of metals.
    Kim SH; Fletcher RA; Zachariah MR
    Environ Sci Technol; 2005 Jun; 39(11):4021-6. PubMed ID: 15984778
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synergistic Effect of Pt and Dual Ni/Co Cations in Hydrotalcite-Derived Pt/Ni
    Zhang Y; Zhang P; Xiong J; Li Y; Ma Y; Zhang S; Zhao Z; Liu J; Wei Y
    Nanomaterials (Basel); 2023 Feb; 13(4):. PubMed ID: 36838991
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chemisorbed Superoxide Species Enhanced the High Catalytic Performance of Ag/Co
    Chen L; Li T; Zhang J; Wang J; Chen P; Fu M; Wu J; Ye D
    ACS Appl Mater Interfaces; 2021 May; 13(18):21436-21449. PubMed ID: 33929836
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Silica-Supported Au-Ag Catalysts for the Selective Hydrogenation of Butadiene.
    Masoud N; Delannoy L; Calers C; Gallet JJ; Bournel F; de Jong KP; Louis C; de Jongh PE
    ChemCatChem; 2017 Jun; 9(12):2418-2425. PubMed ID: 30147805
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electronic Metal-Support Interactions Between Cu
    Lyu S; Zhang Y; Li Z; Liu X; Tian Z; Liu C; Li J; Wang L
    Front Chem; 2022; 10():912550. PubMed ID: 35646814
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Unique properties of ceria nanoparticles supported on metals: novel inverse ceria/copper catalysts for CO oxidation and the water-gas shift reaction.
    Senanayake SD; Stacchiola D; Rodriguez JA
    Acc Chem Res; 2013 Aug; 46(8):1702-11. PubMed ID: 23286528
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hydrogenation of CO
    Palomino RM; Ramírez PJ; Liu Z; Hamlyn R; Waluyo I; Mahapatra M; Orozco I; Hunt A; Simonovis JP; Senanayake SD; Rodriguez JA
    J Phys Chem B; 2018 Jan; 122(2):794-800. PubMed ID: 28825484
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Copper catalysts for soot oxidation: alumina versus perovskite supports.
    López-Suárez FE; Bueno-López A; Illán-Gómez MJ; Adamski A; Ura B; Trawczynski J
    Environ Sci Technol; 2008 Oct; 42(20):7670-5. PubMed ID: 18983091
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fabrication and Performance of Noble Metal Promoted Birnessite Catalysts for Complete Oxidation of Formaldehyde at Low Temperatures.
    Liu L; Tian H; He J; Wang D; Ma C; Yang Q
    J Nanosci Nanotechnol; 2015 Apr; 15(4):2887-95. PubMed ID: 26353510
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sinter-Resistant and Highly Active Sub-5 nm Bimetallic Au-Cu Nanoparticle Catalysts Encapsulated in Silica for High-Temperature Carbon Monoxide Oxidation.
    Zanganeh N; Guda VK; Toghiani H; Keith JM
    ACS Appl Mater Interfaces; 2018 Feb; 10(5):4776-4785. PubMed ID: 29328617
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Au
    Zhou H; Li B; Zhang Y; Yan X; Lv W; Wang X; Yuan B; Liu Y; Yang Z; Lou X
    ACS Appl Mater Interfaces; 2021 Sep; 13(34):40429-40440. PubMed ID: 34425673
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Effect of Zinc Oxide Addition to Alumina-Supported Gold Catalyst in Low Temperature Carbon Monoxide Oxidation.
    Kim KJ; Chang CH; Ahn HG
    J Nanosci Nanotechnol; 2015 Jan; 15(1):60-4. PubMed ID: 26328421
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Effect of precious metal loaded on LaMnO3 on catalytic oxidation of soot].
    Ming CB; Ye DQ; Liu YL; Yang L
    Huan Jing Ke Xue; 2008 Mar; 29(3):576-82. PubMed ID: 18649510
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Study on oxidation activity of Ce-Mn-K composite oxides on diesel soot.
    Huang H; Zhang X; Liu J; Ye S
    Sci Rep; 2020 Jun; 10(1):10025. PubMed ID: 32572132
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Insight into phase structure-dependent soot oxidation activity of K/MnO
    Zheng C; Bao S; Mao D; Xu Z; Zheng S
    J Environ Sci (China); 2023 Apr; 126():668-682. PubMed ID: 36503792
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.