These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 31459891)

  • 1. Study of the Partial Charge Transport Properties in the Molten Alumina via Molecular Dynamics.
    Gheribi AE; Serva A; Salanne M; Machado K; Zanghi D; Bessada C; Chartrand P
    ACS Omega; 2019 May; 4(5):8022-8030. PubMed ID: 31459891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Next-Generation Electrochemical Energy Materials for Intermediate Temperature Molten Oxide Fuel Cells and Ion Transport Molten Oxide Membranes.
    Belousov VV
    Acc Chem Res; 2017 Feb; 50(2):273-280. PubMed ID: 28186402
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of fixed charge and polarizable models for predicting the structural, thermodynamic, and transport properties of molten alkali chlorides.
    Wang H; DeFever RS; Zhang Y; Wu F; Roy S; Bryantsev VS; Margulis CJ; Maginn EJ
    J Chem Phys; 2020 Dec; 153(21):214502. PubMed ID: 33291915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atomistic simulations of molten carbonates: Thermodynamic and transport properties of the Li
    Desmaele E; Sator N; Vuilleumier R; Guillot B
    J Chem Phys; 2019 Mar; 150(9):094504. PubMed ID: 30849908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal conductivity of molten salt mixtures: Theoretical model supported by equilibrium molecular dynamics simulations.
    Gheribi AE; Chartrand P
    J Chem Phys; 2016 Feb; 144(8):084506. PubMed ID: 26931711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polarizable force field parameterization and theoretical simulations of ThCl
    Liu JB; Chen X; Lu JB; Cui HQ; Li J
    J Comput Chem; 2018 Nov; 39(29):2432-2438. PubMed ID: 30351490
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular dynamics study of polarizable point dipole models for molten sodium iodide.
    Alcaraz O; Bitrián V; Trullàs J
    J Chem Phys; 2007 Oct; 127(15):154508. PubMed ID: 17949174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Melting points of alkali chlorides evaluated for a polarizable and non-polarizable model.
    DeFever RS; Wang H; Zhang Y; Maginn EJ
    J Chem Phys; 2020 Jul; 153(1):011101. PubMed ID: 32640828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Some practical approaches to treating electrostatic polarization of proteins.
    Ji C; Mei Y
    Acc Chem Res; 2014 Sep; 47(9):2795-803. PubMed ID: 24883956
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The MgCO
    Desmaele E; Sator N; Vuilleumier R; Guillot B
    J Chem Phys; 2019 Jun; 150(21):214503. PubMed ID: 31176344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular dynamics simulations of the local structures and transport coefficients of molten alkali chlorides.
    Wang J; Sun Z; Lu G; Yu J
    J Phys Chem B; 2014 Aug; 118(34):10196-206. PubMed ID: 25105467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling LiF and FLiBe Molten Salts with Robust Neural Network Interatomic Potential.
    Lam ST; Li QJ; Ballinger R; Forsberg C; Li J
    ACS Appl Mater Interfaces; 2021 Jun; 13(21):24582-24592. PubMed ID: 34019760
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Force fields for studying the structure and dynamics of ionic liquids: a critical review of recent developments.
    Dommert F; Wendler K; Berger R; Delle Site L; Holm C
    Chemphyschem; 2012 May; 13(7):1625-37. PubMed ID: 22344944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase-Transferable Force Field for Alkali Halides.
    Walz MM; Ghahremanpour MM; van Maaren PJ; van der Spoel D
    J Chem Theory Comput; 2018 Nov; 14(11):5933-5948. PubMed ID: 30300552
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Actinide Molten Salts: A Machine-Learning Potential Molecular Dynamics Study.
    Nguyen MT; Rousseau R; Paviet PD; Glezakou VA
    ACS Appl Mater Interfaces; 2021 Nov; 13(45):53398-53408. PubMed ID: 34494435
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermodynamic and Transport Properties of LiF and FLiBe Molten Salts with Deep Learning Potentials.
    Rodriguez A; Lam S; Hu M
    ACS Appl Mater Interfaces; 2021 Nov; 13(46):55367-55379. PubMed ID: 34767334
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular Modeling of Thermodynamic and Transport Properties for CO
    Jiang H; Economou IG; Panagiotopoulos AZ
    Acc Chem Res; 2017 Apr; 50(4):751-758. PubMed ID: 28234455
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic Algorithm Driven Force Field Parameterization for Molten Alkali-Metal Carbonate and Hydroxide Salts.
    Mondal A; Young JM; Barckholtz TA; Kiss G; Koziol L; Panagiotopoulos AZ
    J Chem Theory Comput; 2020 Sep; 16(9):5736-5746. PubMed ID: 32709204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From molten salts to room temperature ionic liquids: simulation studies on chloroaluminate systems.
    Salanne M; Siqueira LJ; Seitsonen AP; Madden PA; Kirchner B
    Faraday Discuss; 2012; 154():171-88; discussion 189-220, 465-71. PubMed ID: 22455021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.