These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 31459895)

  • 1. Investigating Polaron Formation in Anatase and Brookite TiO
    De Lile JR; Kang SG; Son YA; Lee SG
    ACS Omega; 2019 May; 4(5):8056-8064. PubMed ID: 31459895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. First-Principles Modeling of Polaron Formation in TiO
    Elmaslmane AR; Watkins MB; McKenna KP
    J Chem Theory Comput; 2018 Jul; 14(7):3740-3751. PubMed ID: 29874462
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of Feasibility of Polaronic OER on (110) Surface of Rutile TiO
    Pada Sarker H; Abild-Pedersen F; Bajdich M
    Chemphyschem; 2024 Jun; 25(11):e202400060. PubMed ID: 38427793
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hole Polaron Migration in Bulk Phases of TiO
    Carey JJ; Quirk JA; McKenna KP
    J Phys Chem C Nanomater Interfaces; 2021 Jun; 125(22):12441-12450. PubMed ID: 34276864
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient Method for Modeling Polarons Using Electronic Structure Methods.
    Pham TD; Deskins NA
    J Chem Theory Comput; 2020 Aug; 16(8):5264-5278. PubMed ID: 32603136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The nature of excess electrons in anatase and rutile from hybrid DFT and RPA.
    Spreafico C; VandeVondele J
    Phys Chem Chem Phys; 2014 Dec; 16(47):26144-52. PubMed ID: 25360624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polaron formation and transport in Bi
    Tao J; Zhang Q; Liu T
    Phys Chem Chem Phys; 2022 Sep; 24(37):22918-22927. PubMed ID: 36124908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation of carbon-coated brookite@anatase TiO
    Tan R; Wang Y; Jin Z; Zhang P; Luo H; Liu D; Mamba BB; Kuvarega AT; Gui J
    Photochem Photobiol Sci; 2020 Jul; 19(7):966-975. PubMed ID: 32525187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2.
    Zhang J; Zhou P; Liu J; Yu J
    Phys Chem Chem Phys; 2014 Oct; 16(38):20382-6. PubMed ID: 25144471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Migration of Holstein Polarons in Anatase TiO2.
    Yan L; Chen H
    J Chem Theory Comput; 2014 Nov; 10(11):4995-5001. PubMed ID: 26584382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brookite versus anatase TiO2 photocatalysts: phase transformations and photocatalytic activities.
    Kandiel TA; Robben L; Alkaim A; Bahnemann D
    Photochem Photobiol Sci; 2013 Apr; 12(4):602-9. PubMed ID: 22945758
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigating the Unrevealed Photocatalytic Activity and Stability of Nanostructured Brookite TiO
    Choi M; Lim J; Baek M; Choi W; Kim W; Yong K
    ACS Appl Mater Interfaces; 2017 May; 9(19):16252-16260. PubMed ID: 28459533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural and electronic properties of photoexcited TiO2 nanoparticles from first principles.
    Nunzi F; Agrawal S; Selloni A; De Angelis F
    J Chem Theory Comput; 2015 Feb; 11(2):635-45. PubMed ID: 26579599
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Water-Hydrogen-Polaron Coupling at Anatase TiO
    Zhu YN; Teobaldi G; Liu LM
    J Phys Chem Lett; 2020 Jun; 11(11):4317-4325. PubMed ID: 32354210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ti-Ti σ bond at oxygen vacancy inducing the deep defect level in anatase TiO
    Hao YN; Chen T; Zhang X; Zhou H; Ma Y
    J Chem Phys; 2019 Jun; 150(22):224702. PubMed ID: 31202251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nd/TiO
    Kočí K; Troppová I; Reli M; Matějová L; Edelmannová M; Drobná H; Dubnová L; Rokicińska A; Kuśtrowski P; Čapek L
    Front Chem; 2018; 6():44. PubMed ID: 29552558
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of Plasmonic Polarons in Highly Electron-Doped Anatase TiO
    Ma X; Cheng Z; Tian M; Liu X; Cui X; Huang Y; Tan S; Yang J; Wang B
    Nano Lett; 2021 Jan; 21(1):430-436. PubMed ID: 33290081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comprehensive analysis (aerobic/anaerobic, molecular recognitions, band-position and degradation-mechanism) of undoped and Co-doped anatase-brookite - An experimental/theoretical evaluation of the less-studied TiO
    Paz-López CV; Fereidooni M; Praserthdam P; Praserthdam S; Farfán N; Marquez V
    Environ Res; 2023 Jul; 229():115968. PubMed ID: 37121350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sol-gel synthesis of mesoporous anatase-brookite and anatase-brookite-rutile TiO2 nanoparticles and their photocatalytic properties.
    Mutuma BK; Shao GN; Kim WD; Kim HT
    J Colloid Interface Sci; 2015 Mar; 442():1-7. PubMed ID: 25514642
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Excess electron states in reduced bulk anatase TiO2: comparison of standard GGA, GGA+U, and hybrid DFT calculations.
    Finazzi E; Di Valentin C; Pacchioni G; Selloni A
    J Chem Phys; 2008 Oct; 129(15):154113. PubMed ID: 19045182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.