These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 31460080)

  • 1. Transparent Poly(methyl methacrylate) Composites Based on Bacterial Cellulose Nanofiber Networks with Improved Fracture Resistance and Impact Strength.
    Santmarti A; Teh JW; Lee KY
    ACS Omega; 2019 Jun; 4(6):9896-9903. PubMed ID: 31460080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Post-draw PAN-PMMA nanofiber reinforced and toughened Bis-GMA dental restorative composite.
    Sun W; Cai Q; Li P; Deng X; Wei Y; Xu M; Yang X
    Dent Mater; 2010 Sep; 26(9):873-80. PubMed ID: 20579722
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transparent Multilayer Acrylic Composites Reinforced with Poly(Acrylated Urethane) Filled Low Grammage Bacterial Cellulose Nanopaper.
    Wloch D; Herrera N; Lee KY
    Macromol Rapid Commun; 2024 Aug; 45(15):e2400098. PubMed ID: 38862122
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation and characterization of transparent PMMA-cellulose-based nanocomposites.
    Kiziltas EE; Kiziltas A; Bollin SC; Gardner DJ
    Carbohydr Polym; 2015; 127():381-9. PubMed ID: 25965497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacterial Cellulose Network from Kombucha Fermentation Impregnated with Emulsion-Polymerized Poly(methyl methacrylate) to Form Nanocomposite.
    Oliver-Ortega H; Geng S; Espinach FX; Oksman K; Vilaseca F
    Polymers (Basel); 2021 Feb; 13(4):. PubMed ID: 33672280
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optically Transparent and Toughened Poly(methyl methacrylate) Composite Films with Acylated Cellulose Nanofibers.
    Jamaluddin N; Hsu YI; Asoh TA; Uyama H
    ACS Omega; 2021 Apr; 6(16):10752-10758. PubMed ID: 34056229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reinforcing Poly(methyl methacrylate) with Bacterial Cellulose Nanofibers Chemically Modified with Methacryolyl Groups.
    Kono H; Tsujisaki H; Tajima K
    Nanomaterials (Basel); 2022 Feb; 12(3):. PubMed ID: 35159882
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robust All-Cellulose Nanofiber Composite from Stack-Up Bacterial Cellulose Hydrogels via Self-Aggregation Forces.
    Li Z; Li X; Ren J; Wu B; Luo Q; Liu X; Pei C
    J Agric Food Chem; 2020 Mar; 68(9):2696-2701. PubMed ID: 32031789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoparticle rearrangement under stress in networks of cellulose nanofibrils using in situ SAXS during tensile testing.
    Engström J; Jimenez AM; Malmström E
    Nanoscale; 2020 Mar; 12(11):6462-6471. PubMed ID: 32150180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface modification of bacterial cellulose nanofibers for property enhancement of optically transparent composites: dependence on acetyl-group DS.
    Ifuku S; Nogi M; Abe K; Handa K; Nakatsubo F; Yano H
    Biomacromolecules; 2007 Jun; 8(6):1973-8. PubMed ID: 17458936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Innovative upcycling cigarette filters into high-performance cellulose nanofiber-epoxy composites.
    Fathi Z; Abdulkhani A; Hamzeh Y; Ashori A; Shakeri A; Lipponen J
    Int J Biol Macromol; 2024 Nov; 281(Pt 3):136561. PubMed ID: 39401619
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrospun nanofiber reinforcement of dental composites with electromagnetic alignment approach.
    Uyar T; Çökeliler D; Doğan M; Koçum IC; Karatay O; Denkbaş EB
    Mater Sci Eng C Mater Biol Appl; 2016 May; 62():762-70. PubMed ID: 26952482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermoformable and transparent one-component nanocomposites based on surface grafted cellulose nanofiber.
    Chen S; Li D; Song F; Wang XL; Wang YZ
    Int J Biol Macromol; 2022 Dec; 223(Pt A):213-222. PubMed ID: 36347373
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-reinforced composite poly(methyl methacrylate): static and fatigue properties.
    Gilbert JL; Ney DS; Lautenschlager EP
    Biomaterials; 1995 Sep; 16(14):1043-55. PubMed ID: 8519925
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of graphene concentration on electrochemical and tribological properties of graphene-poly(methyl methacrylate) composite coatings.
    Salasel AR; Bhowmick S; Riahi R; Alpas AT
    J Compos Mater; 2023 Oct; 57(24):3877-3896. PubMed ID: 37771790
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of the mechanical performance of bacterial cellulose/poly(L-lactic) acid composites.
    Quero F; Nogi M; Yano H; Abdulsalami K; Holmes SM; Sakakini BH; Eichhorn SJ
    ACS Appl Mater Interfaces; 2010 Jan; 2(1):321-30. PubMed ID: 20356252
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Fabrication of High-Hardness and Transparent PMMA-Based Composites by an Interface Engineering Strategy.
    Cao B; Wu P; Zhang W; Liu S; Zhao J
    Molecules; 2022 Dec; 28(1):. PubMed ID: 36615497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of processing temperature and time on the structure and fracture characteristics of self-reinforced composite poly(methyl methacrylate).
    Wright DD; Gilbert JL; Lautenschlager EP
    J Mater Sci Mater Med; 1999 Aug; 10(8):503-12. PubMed ID: 15348121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large-scale production of PMMA/SWCNT composites based on SWCNT modified with PMMA.
    Fraser RA; Stoeffler K; Ashrafi B; Zhang Y; Simard B
    ACS Appl Mater Interfaces; 2012 Apr; 4(4):1990-7. PubMed ID: 22422047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of Esterified Bacterial Cellulose for Improved Mechanical Properties and the Microstructure of Isotactic Polypropylene/Bacterial Cellulose Composites.
    Wang B; Yang D; Zhang HR; Huang C; Xiong L; Luo J; Chen XD
    Polymers (Basel); 2016 Apr; 8(4):. PubMed ID: 30979230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.