These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 31460080)
21. Bacterial cellulose nanopaper as reinforcement for polylactide composites: renewable thermoplastic NanoPaPreg. Montrikittiphant T; Tang M; Lee KY; Williams CK; Bismarck A Macromol Rapid Commun; 2014 Oct; 35(19):1640-5. PubMed ID: 25042545 [TBL] [Abstract][Full Text] [Related]
22. Studies on the effects of titanate and silane coupling agents on the performance of poly (methyl methacrylate)/barium titanate denture base nanocomposites. Elshereksi NW; Ghazali MJ; Muchtar A; Azhari CH J Dent; 2017 Jan; 56():121-132. PubMed ID: 27916635 [TBL] [Abstract][Full Text] [Related]
23. Effect of Acid Hydrolysis Conditions on the Properties of Cellulose Nanoparticle-Reinforced Polymethylmethacrylate Composites. Han G; Huan S; Han J; Zhang Z; Wu Q Materials (Basel); 2013 Dec; 7(1):16-29. PubMed ID: 28788437 [TBL] [Abstract][Full Text] [Related]
24. Transparent and strong polymer nanocomposites generated from Pickering emulsion gels stabilized by cellulose nanofibrils. Liu X; Qi X; Guan Y; He Y; Li S; Liu H; Zhou L; Wei C; Yu C; Chen Y Carbohydr Polym; 2019 Nov; 224():115202. PubMed ID: 31472833 [TBL] [Abstract][Full Text] [Related]
34. Highly Transparent and Toughened Poly(methyl methacrylate) Nanocomposite Films Containing Networks of Cellulose Nanofibrils. Dong H; Sliozberg YR; Snyder JF; Steele J; Chantawansri TL; Orlicki JA; Walck SD; Reiner RS; Rudie AW ACS Appl Mater Interfaces; 2015 Nov; 7(45):25464-72. PubMed ID: 26513136 [TBL] [Abstract][Full Text] [Related]
35. Reinforcement of a PMMA resin for interim fixed prostheses with silica nanoparticles. Topouzi M; Kontonasaki E; Bikiaris D; Papadopoulou L; Paraskevopoulos KM; Koidis P J Mech Behav Biomed Mater; 2017 May; 69():213-222. PubMed ID: 28088693 [TBL] [Abstract][Full Text] [Related]
36. Laccase-assisted grafting of poly(3-hydroxybutyrate) onto the bacterial cellulose as backbone polymer: development and characterisation. Iqbal HM; Kyazze G; Tron T; Keshavarz T Carbohydr Polym; 2014 Nov; 113():131-7. PubMed ID: 25256467 [TBL] [Abstract][Full Text] [Related]
37. Structure and properties of polypyrrole/bacterial cellulose nanocomposites. Muller D; Rambo CR; Porto LM; Schreiner WH; Barra GM Carbohydr Polym; 2013 Apr; 94(1):655-62. PubMed ID: 23544587 [TBL] [Abstract][Full Text] [Related]
38. Mechanical properties and osteoconductivity of new bioactive composites consisting of partially crystallized glass beads and poly(methyl methacrylate). Shinzato S; Nakamura T; Ando K; Kokubo T; Kitamura Y J Biomed Mater Res; 2002 Jun; 60(4):556-63. PubMed ID: 11948514 [TBL] [Abstract][Full Text] [Related]
39. Preparation of Transparent and Thick CNF/Epoxy Composites by Controlling the Properties of Cellulose Nanofibrils. Park SY; Yook S; Goo S; Im W; Youn HJ Nanomaterials (Basel); 2020 Mar; 10(4):. PubMed ID: 32231002 [TBL] [Abstract][Full Text] [Related]
40. Three-Dimensional-Moldable Nanofiber-Reinforced Transparent Composites with a Hierarchically Self-Assembled "Reverse" Nacre-like Architecture. Biswas SK; Sano H; Shams MI; Yano H ACS Appl Mater Interfaces; 2017 Sep; 9(35):30177-30184. PubMed ID: 28812354 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]