These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 31460080)
41. Preparation and Properties of Lv S; Zhao X; Shi L; Zhang G; Wang S; Kang W; Zhuang X Polymers (Basel); 2018 Sep; 10(9):. PubMed ID: 30960920 [TBL] [Abstract][Full Text] [Related]
42. Diblock copolymer of bacterial cellulose and poly(methyl methacrylate) initiated by chain-end-type radicals produced by mechanical scission of glycosidic linkages of bacterial cellulose. Sakaguchi M; Ohura T; Iwata T; Takahashi S; Akai S; Kan T; Murai H; Fujiwara M; Watanabe O; Narita M Biomacromolecules; 2010 Nov; 11(11):3059-66. PubMed ID: 20882979 [TBL] [Abstract][Full Text] [Related]
43. Use of Polycaprolactone Electrospun Nanofibers as a Coating for Poly(methyl methacrylate) Bone Cement. Khandaker M; Riahinezhad S; Jamadagni HG; Morris TL; Coles AV; Vaughan MB Nanomaterials (Basel); 2017 Jul; 7(7):. PubMed ID: 28698500 [TBL] [Abstract][Full Text] [Related]
44. Aramid nanofiber-functionalized graphene nanosheets for polymer reinforcement. Fan J; Shi Z; Zhang L; Wang J; Yin J Nanoscale; 2012 Nov; 4(22):7046-55. PubMed ID: 23047662 [TBL] [Abstract][Full Text] [Related]
45. Interlaminar Mechanical Properties and Toughening Mechanism of Highly Thermally Stable Composite Modified by Polyacrylonitrile Nanofiber Films. Ma Y; Zhuang Y; Li C; Luo C; Shen X Polymers (Basel); 2022 Mar; 14(7):. PubMed ID: 35406222 [TBL] [Abstract][Full Text] [Related]
47. Damage-Resistant Composites Using Electrospun Nanofibers: A Multiscale Analysis of the Toughening Mechanisms. Daelemans L; van der Heijden S; De Baere I; Rahier H; Van Paepegem W; De Clerck K ACS Appl Mater Interfaces; 2016 May; 8(18):11806-18. PubMed ID: 27088482 [TBL] [Abstract][Full Text] [Related]
48. The effect of layering structures on mechanical and thermal properties of hybrid bacterial cellulose/Kevlar reinforced epoxy composites. Rusdi RAA; Halim NA; Nurazzi NM; Abidin ZHZ; Abdullah N; Ros FC; Ahmad N; Azmi AFM Heliyon; 2022 Jun; 8(6):e09442. PubMed ID: 35677420 [TBL] [Abstract][Full Text] [Related]
49. Rational design of a high-strength bone scaffold platform based on in situ hybridization of bacterial cellulose/nano-hydroxyapatite framework and silk fibroin reinforcing phase. Jiang P; Ran J; Yan P; Zheng L; Shen X; Tong H J Biomater Sci Polym Ed; 2018 Feb; 29(2):107-124. PubMed ID: 29140181 [TBL] [Abstract][Full Text] [Related]
50. The Biosynthesis of Bacterial Cellulose Composites Accompanied by Spray Feeding of Biomasses. Xu J; Liu X; Zhang Q Polymers (Basel); 2024 Sep; 16(17):. PubMed ID: 39274173 [TBL] [Abstract][Full Text] [Related]
51. Fabrication and Characterization of Multifunctional Curcumin Loaded Poly(methyl methacrylate) Fluorescent Nanofiber Membrane. Sarika R; Shankaran DR J Nanosci Nanotechnol; 2021 Apr; 21(4):2246-2253. PubMed ID: 33500039 [TBL] [Abstract][Full Text] [Related]
52. Cellulose Nanofiber-Reinforced Ionic Conductors for Multifunctional Sensors and Devices. Wang M; Li R; Feng X; Dang C; Dai F; Yin X; He M; Liu D; Qi H ACS Appl Mater Interfaces; 2020 Jun; 12(24):27545-27554. PubMed ID: 32458678 [TBL] [Abstract][Full Text] [Related]
53. Toward millimeter thick cellulose nanofiber/epoxy laminates with good transparency and high flexural strength. Lee K; Kwon G; Jeon Y; Jeon S; Hong C; Choung JW; You J Carbohydr Polym; 2022 Sep; 291():119514. PubMed ID: 35698324 [TBL] [Abstract][Full Text] [Related]
54. Flexible fiber-reinforced composites with improved interfacial adhesion by mussel-inspired polydopamine and poly(methyl methacrylate) coating. Yi M; Sun H; Zhang H; Deng X; Cai Q; Yang X Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():742-9. PubMed ID: 26478367 [TBL] [Abstract][Full Text] [Related]
55. Preparation of hydroxyapatite/poly(methyl methacrylate) and calcium silicate/poly(methyl methacrylate) interpenetrating hybrid composites. Monvisade P; Siriphannon P; Jermsungnern R; Rattanabodee S J Mater Sci Mater Med; 2007 Oct; 18(10):1955-9. PubMed ID: 17554595 [TBL] [Abstract][Full Text] [Related]
56. Nanoreinforced bacterial cellulose-montmorillonite composites for biomedical applications. Ul-Islam M; Khan T; Park JK Carbohydr Polym; 2012 Aug; 89(4):1189-97. PubMed ID: 24750931 [TBL] [Abstract][Full Text] [Related]
58. Novel layer-by-layer procedure for making nylon-6 nanofiber reinforced high strength, tough, and transparent thermoplastic polyurethane composites. Jiang S; Duan G; Hou H; Greiner A; Agarwal S ACS Appl Mater Interfaces; 2012 Aug; 4(8):4366-72. PubMed ID: 22817392 [TBL] [Abstract][Full Text] [Related]
59. Physical and Morphological Properties of Tough and Transparent PMMA-Based Blends Modified with Polyrotaxane. Ishigami A; Watanabe K; Kurose T; Ito H Polymers (Basel); 2020 Aug; 12(8):. PubMed ID: 32785130 [TBL] [Abstract][Full Text] [Related]
60. Toward transparent nanocomposites based on polystyrene matrix and PMMA-grafted CeO2 nanoparticles. Parlak O; Demir MM ACS Appl Mater Interfaces; 2011 Nov; 3(11):4306-14. PubMed ID: 21970464 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]