These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
26. CO Hassanpouryouzband A; Yang J; Tohidi B; Chuvilin E; Istomin V; Bukhanov B; Cheremisin A Environ Sci Technol; 2018 Apr; 52(7):4324-4330. PubMed ID: 29513532 [TBL] [Abstract][Full Text] [Related]
27. Chemical control of dissolution-driven convection in partially miscible systems: nonlinear simulations and experiments. Budroni MA; Thomas C; De Wit A Phys Chem Chem Phys; 2017 Mar; 19(11):7936-7946. PubMed ID: 28262876 [TBL] [Abstract][Full Text] [Related]
28. Acceleration of convective dissolution by chemical reaction in a Hele-Shaw cell. Cherezov I; Cardoso SS Phys Chem Chem Phys; 2016 Sep; 18(34):23727-36. PubMed ID: 27510413 [TBL] [Abstract][Full Text] [Related]
29. Pattern formation and coarsening dynamics in three-dimensional convective mixing in porous media. Fu X; Cueto-Felgueroso L; Juanes R Philos Trans A Math Phys Eng Sci; 2013 Dec; 371(2004):20120355. PubMed ID: 24471271 [TBL] [Abstract][Full Text] [Related]
30. Variable-density groundwater flow and solute transport in heterogeneous porous media: approaches, resolutions and future challenges. Simmons CT; Fenstemaker TR; Sharp JM J Contam Hydrol; 2001 Nov; 52(1-4):245-75. PubMed ID: 11695743 [TBL] [Abstract][Full Text] [Related]
31. Analysis of onset of Soret-driven convection by the energy method. Kim MC; Choi CK Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 2):036302. PubMed ID: 17930336 [TBL] [Abstract][Full Text] [Related]
32. Buoyancy-Driven Dissolution Instability in a Horizontal Hele-Shaw Cell. Li K; Hu R; Wang T; Yang Z; Chen YF Langmuir; 2024 Feb; 40(8):4186-4197. PubMed ID: 38358822 [TBL] [Abstract][Full Text] [Related]
33. Nonlinear development of convective patterns driven by a neutralization reaction in immiscible two-layer systems. Bratsun D; Mizev A; Utochkin V; Nekrasov S; Shmyrova A Philos Trans A Math Phys Eng Sci; 2023 Apr; 381(2245):20220178. PubMed ID: 36842984 [TBL] [Abstract][Full Text] [Related]
34. Convective instabilities derived from dissipation of chemical energy. Simoyi RH Chaos; 2019 Aug; 29(8):083136. PubMed ID: 31472521 [TBL] [Abstract][Full Text] [Related]
35. Theoretical and experimental comparison of the Soret coefficient for water-methanol and water-ethanol binary mixtures. Saghir MZ; Jiang CG; Derawi SO; Stenby EH; Kawaji M Eur Phys J E Soft Matter; 2004 Nov; 15(3):241-7. PubMed ID: 15592763 [TBL] [Abstract][Full Text] [Related]
36. Nonmonotonic Rayleigh-Taylor instabilities driven by gas-liquid CO2 chemisorption. Wylock C; Rednikov A; Haut B; Colinet P J Phys Chem B; 2014 Sep; 118(38):11323-9. PubMed ID: 25181607 [TBL] [Abstract][Full Text] [Related]
37. Rayleigh-Benard convective instability: concentration Rayleigh number for isothermal passive transmembrane transport processes. Slezak A Polim Med; 2004; 34(1):27-37. PubMed ID: 15222225 [TBL] [Abstract][Full Text] [Related]
38. CO Iglauer S Acc Chem Res; 2017 May; 50(5):1134-1142. PubMed ID: 28406029 [TBL] [Abstract][Full Text] [Related]
39. Chemical control of dissolution-driven convection in partially miscible systems: theoretical classification. Loodts V; Rongy L; De Wit A Phys Chem Chem Phys; 2015 Nov; 17(44):29814-23. PubMed ID: 26486608 [TBL] [Abstract][Full Text] [Related]