BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 31460446)

  • 1. High-Performance Styrene-Butadiene Rubber Nanocomposites Reinforced by Surface-Modified Cellulose Nanofibers.
    Sinclair A; Zhou X; Tangpong S; Bajwa DS; Quadir M; Jiang L
    ACS Omega; 2019 Aug; 4(8):13189-13199. PubMed ID: 31460446
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Property enhancement of epoxidized natural rubber nanocomposites with water hyacinth-extracted cellulose nanofibers.
    Tanpichai S; Thongdeelerd C; Chantaramanee T; Boonmahitthisud A
    Int J Biol Macromol; 2023 Apr; 234():123741. PubMed ID: 36806770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study of Carbon Black Types in SBR Rubber: Mechanical and Vibration Damping Properties.
    Pöschl M; Vašina M; Zádrapa P; Měřínská D; Žaludek M
    Materials (Basel); 2020 May; 13(10):. PubMed ID: 32455984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved Heat Dissipation of NR/SBR-Based Tire Tread Compounds via Hybrid Fillers of Multi-Walled Carbon Nanotube and Carbon Black.
    Kodal M; Yazıcı Çakır N; Yıldırım R; Karakaya N; Özkoç G
    Polymers (Basel); 2023 Nov; 15(23):. PubMed ID: 38231911
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Properties of natural rubber reinforced with cellulose nanofibers based on fiber diameter distribution as estimated by differential centrifugal sedimentation.
    Kumagai A; Tajima N; Iwamoto S; Morimoto T; Nagatani A; Okazaki T; Endo T
    Int J Biol Macromol; 2019 Jan; 121():989-995. PubMed ID: 30342153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Converting waste lignin into nano-biochar as a renewable substitute of carbon black for reinforcing styrene-butadiene rubber.
    Jiang C; Bo J; Xiao X; Zhang S; Wang Z; Yan G; Wu Y; Wong C; He H
    Waste Manag; 2020 Feb; 102():732-742. PubMed ID: 31805446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reinforcement of rubber nanocomposite thin sheets by percolation of pristine cellulose nanocrystals.
    Jardin JM; Zhang Z; Hu G; Tam KC; Mekonnen TH
    Int J Biol Macromol; 2020 Jun; 152():428-436. PubMed ID: 32112834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Zinc Complexes with 1,3-Diketones as Activators for Sulfur Vulcanization of Styrene-Butadiene Elastomer Filled with Carbon Black.
    Maciejewska M; Sowińska A; Grocholewicz A
    Materials (Basel); 2021 Jul; 14(14):. PubMed ID: 34300723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of 3-Mercaptopropyltriethoxysilane Modified Illite on the Reinforcement of SBR.
    Wang Z; Zhang H; Liu Q; Wang S; Yan S
    Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A molecular dynamics study on Young's modulus and tribology of carbon nanotube reinforced styrene-butadiene rubber.
    Chawla R; Sharma S
    J Mol Model; 2018 Mar; 24(4):96. PubMed ID: 29552697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Water-responsive mechanically adaptive nanocomposites based on styrene-butadiene rubber and cellulose nanocrystals--processing matters.
    Annamalai PK; Dagnon KL; Monemian S; Foster EJ; Rowan SJ; Weder C
    ACS Appl Mater Interfaces; 2014 Jan; 6(2):967-76. PubMed ID: 24354282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrophobized MFC as Reinforcing Additive in Industrial Silica/SBR Tire Tread Compound.
    Liu M; Imiete IE; Staropoli M; Steiner P; Duez B; Lenoble D; Scolan E; Thomann JS
    Polymers (Basel); 2023 Sep; 15(19):. PubMed ID: 37835985
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High performance graphene oxide based rubber composites.
    Mao Y; Wen S; Chen Y; Zhang F; Panine P; Chan TW; Zhang L; Liang Y; Liu L
    Sci Rep; 2013; 3():2508. PubMed ID: 23974435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Upcycling green carbon black as a reinforcing agent for styrene-butadiene rubber materials.
    Lee SH; Kim JH; Park HH
    RSC Adv; 2022 Oct; 12(47):30480-30486. PubMed ID: 36337984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expanding the "Magic Triangle" of Reinforced Rubber Using a Supramolecular Filler Strategy.
    Zhao Y; Ren M; Zhu X; Ren Z; Hu Y; Zhao H; Wang W; Chen Y; Gao K; Zhou Y
    Materials (Basel); 2023 Apr; 16(9):. PubMed ID: 37176310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation and characterization of thermoplastic starch and cellulose nanofibers as green nanocomposites: Extrusion processing.
    Ghanbari A; Tabarsa T; Ashori A; Shakeri A; Mashkour M
    Int J Biol Macromol; 2018 Jun; 112():442-447. PubMed ID: 29410268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly Transparent and Toughened Poly(methyl methacrylate) Nanocomposite Films Containing Networks of Cellulose Nanofibrils.
    Dong H; Sliozberg YR; Snyder JF; Steele J; Chantawansri TL; Orlicki JA; Walck SD; Reiner RS; Rudie AW
    ACS Appl Mater Interfaces; 2015 Nov; 7(45):25464-72. PubMed ID: 26513136
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of octamethylcyclotetrasiloxane grafting and
    Yin C; Zhang Q
    RSC Adv; 2019 Oct; 9(59):34330-34341. PubMed ID: 35529980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct observation of dynamic interaction between a functional group in a single SBR chain and an inorganic matter surface.
    Shinohara KI; Makida Y
    Sci Rep; 2018 Sep; 8(1):13982. PubMed ID: 30228343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal stability of starch bionanocomposites films: Exploring the role of esterified cellulose nanofibers isolated from crop residue.
    Ahuja D; Kumar L; Kaushik A
    Carbohydr Polym; 2021 Mar; 255():117466. PubMed ID: 33436234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.