These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 31460448)

  • 1. Improving the Quantum Capacitance of Graphene-Based Supercapacitors by the Doping and Co-Doping: First-Principles Calculations.
    Xu Q; Yang G; Fan X; Zheng W
    ACS Omega; 2019 Aug; 4(8):13209-13217. PubMed ID: 31460448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tailoring graphene-based electrodes from semiconducting to metallic to increase the energy density in supercapacitors.
    Vatamanu J; Ni X; Liu F; Bedrov D
    Nanotechnology; 2015 Nov; 26(46):464001. PubMed ID: 26511198
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring doped or vacancy-modified graphene-based electrodes for applications in asymmetric supercapacitors.
    da Silva DAC; Paulista Neto AJ; Pascon AM; Fileti EE; Fonseca LRC; Zanin HG
    Phys Chem Chem Phys; 2020 Feb; 22(7):3906-3913. PubMed ID: 32016251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorption of metal atoms on silicene: stability and quantum capacitance of silicene-based electrode materials.
    Xu Q; Yang GM; Fan X; Zheng WT
    Phys Chem Chem Phys; 2019 Feb; 21(8):4276-4285. PubMed ID: 30724282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large capacitance enhancement induced by metal-doping in graphene-based supercapacitors: a first-principles-based assessment.
    Paek E; Pak AJ; Hwang GS
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):12168-76. PubMed ID: 24983127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. First-principles study of stability, electronic structure and quantum capacitance of B-, N- and O-doped graphynes as supercapacitor electrodes.
    Chen X; Xu W; Song B; He P
    J Phys Condens Matter; 2020 May; 32(21):215501. PubMed ID: 31968329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. First-Principles Density Functional Theory Study of Modified Germanene-Based Electrode Materials.
    Si X; She W; Xu Q; Yang G; Li Z; Wang S; Luan J
    Materials (Basel); 2021 Dec; 15(1):. PubMed ID: 35009249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced quantum capacitance of MX
    Rani B; Bubanja V; Jindal VK
    J Phys Condens Matter; 2023 Jul; 35(41):. PubMed ID: 37419126
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Density functional theory studies on graphene/h-boron nitride hybrid nanosheets for supercapacitor electrode applications.
    Paramasivam N; Sambandam A; Natesan B
    Phys Chem Chem Phys; 2023 Nov; 25(43):29914-29923. PubMed ID: 37901967
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Density Functional Theory Calculations of the Quantum Capacitance of Graphene Oxide as a Supercapacitor Electrode.
    Song C; Wang J; Meng Z; Hu F; Jian X
    Chemphyschem; 2018 Jul; 19(13):1579-1583. PubMed ID: 29603849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluating the appropriateness of γ-graphyne derivatives as electrode materials for supercapacitors.
    Kenarsari MA; Vafaee M; Nasrollahpour M; Khoshdel SMM
    Sci Rep; 2023 Sep; 13(1):15090. PubMed ID: 37699919
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing graphene capacitance by nitrogen: effects of doping configuration and concentration.
    Zhan C; Zhang Y; Cummings PT; Jiang DE
    Phys Chem Chem Phys; 2016 Feb; 18(6):4668-74. PubMed ID: 26794824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical investigation of quantum capacitance of Co-doped α-MnO
    Vijayan AK; M S S; Kour S; Dastider SG; Mondal K; Sharma AL
    Phys Chem Chem Phys; 2023 Sep; 25(37):25789-25802. PubMed ID: 37724421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of modulation by adsorption and doping on the quantum capacitance of borophene.
    Yang G; Yang X; Li Z; Huang H; Lin J
    RSC Adv; 2023 Sep; 13(40):27792-27800. PubMed ID: 37736563
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tunable Electronic Properties of Nitrogen and Sulfur Doped Graphene: Density Functional Theory Approach.
    Lee JH; Kwon SH; Kwon S; Cho M; Kim KH; Han TH; Lee SG
    Nanomaterials (Basel); 2019 Feb; 9(2):. PubMed ID: 30781379
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Achieving high quantum capacitance graphdiyne through doping and adsorption.
    Yang G; Li Z; Wang S; Lin J
    Phys Chem Chem Phys; 2023 Jan; 25(3):2012-2018. PubMed ID: 36541670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Light non-metallic atom (B, N, O and F)-doped graphene: a first-principles study.
    Wu M; Cao C; Jiang JZ
    Nanotechnology; 2010 Dec; 21(50):505202. PubMed ID: 21098927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Route to achieving enhanced quantum capacitance in functionalized graphene based supercapacitor electrodes.
    Sruthi T; Kartick T
    J Phys Condens Matter; 2019 Nov; 31(47):475502. PubMed ID: 31212269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Origins and Implications of Interfacial Capacitance Enhancements in C
    Zhan C; Pham TA; Cerón MR; Campbell PG; Vedharathinam V; Otani M; Jiang DE; Biener J; Wood BC; Biener M
    ACS Appl Mater Interfaces; 2018 Oct; 10(43):36860-36865. PubMed ID: 30296045
    [TBL] [Abstract][Full Text] [Related]  

  • 20. First-Principles Investigation of Adsorption and Diffusion of Ions on Pristine, Defective and B-doped Graphene.
    Wan W; Wang H
    Materials (Basel); 2015 Sep; 8(9):6163-6178. PubMed ID: 28793558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.