These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

56 related articles for article (PubMed ID: 31460488)

  • 1. Catalytic Steam Reforming of Biomass-Derived Acetic Acid over Two Supported Ni Catalysts for Hydrogen-Rich Syngas Production.
    Fu P; Zhang A; Luo S; Yi W; Hu S; Zhang Y
    ACS Omega; 2019 Aug; 4(8):13585-13593. PubMed ID: 31460488
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogen Production by Steam Reforming of Ethanol and Dry Reforming of Methane with CO
    Mahir H; Benzaouak A; Mesrar F; El Hamidi A; Kacimi M; Consentino L; Liotta LF
    Molecules; 2024 May; 29(11):. PubMed ID: 38893456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Appraisal of agroforestry biomass wastes for hydrogen production by an integrated process of fast pyrolysis and in line steam reforming.
    Arregi A; Santamaria L; Lopez G; Olazar M; Bilbao J; Artetxe M; Amutio M
    J Environ Manage; 2023 Dec; 347():119071. PubMed ID: 37801944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Promoters on Steam Reforming of Toluene over a Ni-Based Catalyst Supported on Coal Gangue Ash.
    Lu M; Xiong Z; Fang K; Li J; Li X; Li T
    ACS Omega; 2020 Oct; 5(41):26335-26346. PubMed ID: 33110961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigating the Catalytic Influence of Boron on Ni-Co/Ca Catalysts for Improved Syngas Generation from Rice Straw Pyrolysis.
    Wang J; Wang L; Li Y
    Molecules; 2024 Apr; 29(8):. PubMed ID: 38675550
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing the catalytic H
    Wu L; Yan Z; Xie J; Xu Q; Li Z
    Bioresour Technol; 2024 Jun; 402():130844. PubMed ID: 38754560
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Global Vision of the Reaction and Deactivation Routes in the Ethanol Steam Reforming on a Catalyst Derived from a Ni-Al Spinel.
    Iglesias-Vázquez S; Valecillos J; Remiro A; Valle B; Bilbao J; Gayubo AG
    Energy Fuels; 2024 Apr; 38(8):7033-7048. PubMed ID: 38654764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomass Source Influence on Hydrogen Production through Pyrolysis and in Line Oxidative Steam Reforming.
    Garcia I; Lopez G; Santamaria L; Fernandez E; Bilbao J; Olazar M; Artetxe M; Amutio M
    ChemSusChem; 2024 May; ():e202400325. PubMed ID: 38742482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly Efficient Transformation of Tar Model Compounds into Hydrogen by a Ni-Co Alloy Nanocatalyst During Tar Steam Reforming.
    Chen J; Liu Y; Chen Z; Yue J; Tian Y; Zheng C; Zhang J
    Environ Sci Technol; 2024 Feb; ():. PubMed ID: 38320954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methanol Steam Reforming for Hydrogen Production over Ni-Based Catalysts: State-Of-The-Art Review and Future Prospects.
    Hu B; Shu R; Khairun HS; Tian Z; Wang C; Kumar Gupta N
    Chem Asian J; 2024 May; ():e202400217. PubMed ID: 38752326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mullite-like SmMn
    Chen H; Chen Q; Hu X; Ding C; Huang L; Wang N
    Materials (Basel); 2024 May; 17(11):. PubMed ID: 38893754
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reforming of biomass-derived producer gas using toluene as model tar: Deactivation and regeneration studies in Ni and K-Ni catalysts.
    Azancot L; González-Castaño M; Bobadilla LF; Centeno MA; Odriozola JA
    Environ Res; 2024 Apr; 247():118210. PubMed ID: 38237753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous production of syngas and carbon nanotubes from CO
    Sae-Tang N; Saconsint S; Srifa A; Koo-Amornpattana W; Assabumrungrat S; Fukuhara C; Ratchahat S
    Sci Rep; 2024 Jul; 14(1):16282. PubMed ID: 39009758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined Steam and CO
    Sumarasingha W; Tungkamani S; Ratana T; Supasitmongkol S; Phongaksorn M
    ACS Omega; 2023 Dec; 8(49):46425-46437. PubMed ID: 38107949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Renewable Hydrogen Production by Aqueous Phase Reforming of Pure/Refined Crude Glycerol over Ni/Al-Ca Catalysts.
    Raso R; Abad E; García L; Ruiz J; Oliva M; Arauzo J
    Molecules; 2023 Sep; 28(18):. PubMed ID: 37764471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Waste-derived catalysts for tar cracking in hot syngas cleaning.
    Parrillo F; Ardolino F; Boccia C; Arconati V; Ruoppolo G; Arena U
    Waste Manag; 2024 Apr; 179():163-174. PubMed ID: 38479255
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent Advances in Bimetallic Catalysts for Methane Steam Reforming in Hydrogen Production: Current Trends, Challenges, and Future Prospects.
    Yusuf BO; Umar M; Kotob E; Abdulhakam A; Taialla OA; Awad MM; Hussain I; Alhooshani KR; Ganiyu SA
    Chem Asian J; 2023 Sep; ():e202300641. PubMed ID: 37740712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogen Production through Distinctive C-C Cleavage during Acetic Acid Reforming at Low Temperature.
    Shen Y; Yang Z; Tang X; Zhang J; Lv G
    ChemSusChem; 2024 Jun; 17(12):e202301532. PubMed ID: 38321849
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Salt-Supported Nickel Oxides for Boosted Hydrogen Production: The Critical Role of Halogen.
    Cai Y; Gu S; Ding Y; Hu Y; Huang L; Shen Y; Li P; Song S; Guan J; Gao P
    ACS Appl Mater Interfaces; 2024 Mar; 16(9):11575-11584. PubMed ID: 38400846
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalytic reforming of palm kernel shell microwave pyrolysis vapors over iron-loaded activated carbon: Enhanced production of phenol and hydrogen.
    An Y; Tahmasebi A; Zhao X; Matamba T; Yu J
    Bioresour Technol; 2020 Jun; 306():123111. PubMed ID: 32203900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.