BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 31460568)

  • 41. Nano-photosensitizers for enhanced photodynamic therapy.
    Lin L; Song X; Dong X; Li B
    Photodiagnosis Photodyn Ther; 2021 Dec; 36():102597. PubMed ID: 34699982
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Viral Nanoparticle System: An Effective Platform for Photodynamic Therapy.
    Lin S; Liu C; Han X; Zhong H; Cheng C
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33572365
    [TBL] [Abstract][Full Text] [Related]  

  • 43. An insight on the role of photosensitizer nanocarriers for Photodynamic Therapy.
    Mesquita MQ; Dias CJ; Gamelas S; Fardilha M; Neves MGPMS; Faustino MAF
    An Acad Bras Cienc; 2018; 90(1 Suppl 2):1101-1130. PubMed ID: 29873674
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Discovery and Development of Natural Products and their Derivatives as Photosensitizers for Photodynamic Therapy.
    Xiao Q; Wu J; Pang X; Jiang Y; Wang P; Leung AW; Gao L; Jiang S; Xu C
    Curr Med Chem; 2018; 25(7):839-860. PubMed ID: 28831916
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Size-engineered biocompatible polymeric nanophotosensitizer for locoregional photodynamic therapy of cancer.
    Jeong K; Park S; Lee YD; Kang CS; Kim HJ; Park H; Kwon IC; Kim J; Park CR; Kim S
    Colloids Surf B Biointerfaces; 2016 Aug; 144():303-310. PubMed ID: 27107384
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Recent Advances in Developing Photosensitizers for Photodynamic Cancer Therapy.
    Chen C; Wang J; Li X; Liu X; Han X
    Comb Chem High Throughput Screen; 2017; 20(5):414-422. PubMed ID: 28088891
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A review of nanoparticle photosensitizer drug delivery uptake systems for photodynamic treatment of lung cancer.
    Mokwena MG; Kruger CA; Ivan MT; Heidi A
    Photodiagnosis Photodyn Ther; 2018 Jun; 22():147-154. PubMed ID: 29588217
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Supramolecular photosensitizers rejuvenate photodynamic therapy.
    Li X; Lee S; Yoon J
    Chem Soc Rev; 2018 Feb; 47(4):1174-1188. PubMed ID: 29334090
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Overcoming barriers in photodynamic therapy harnessing nano-formulation strategies.
    Xie J; Wang Y; Choi W; Jangili P; Ge Y; Xu Y; Kang J; Liu L; Zhang B; Xie Z; He J; Xie N; Nie G; Zhang H; Kim JS
    Chem Soc Rev; 2021 Aug; 50(16):9152-9201. PubMed ID: 34223847
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Calcium phosphosilicate nanoparticles for imaging and photodynamic therapy of cancer.
    Tacelosky DM; Creecy AE; Shanmugavelandy SS; Smith JP; Claxton DF; Adair JH; Kester M; Barth BM
    Discov Med; 2012 Apr; 13(71):275-85. PubMed ID: 22541615
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Liposomal nanostructures for photosensitizer delivery.
    Jin CS; Zheng G
    Lasers Surg Med; 2011 Sep; 43(7):734-48. PubMed ID: 22057501
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nanostructure controlled sustained delivery of human growth hormone using injectable, biodegradable, pH/temperature responsive nanobiohybrid hydrogel.
    Singh NK; Nguyen QV; Kim BS; Lee DS
    Nanoscale; 2015 Feb; 7(7):3043-54. PubMed ID: 25603888
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Host-guest interaction based supramolecular photodynamic therapy systems: a promising candidate in the battle against cancer.
    Yang K; Zhang Z; Du J; Li W; Pei Z
    Chem Commun (Camb); 2020 Jun; 56(44):5865-5876. PubMed ID: 32432243
    [TBL] [Abstract][Full Text] [Related]  

  • 54. In vivo studies of nanostructure-based photosensitizers for photodynamic cancer therapy.
    Voon SH; Kiew LV; Lee HB; Lim SH; Noordin MI; Kamkaew A; Burgess K; Chung LY
    Small; 2014 Dec; 10(24):4993-5013. PubMed ID: 25164105
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Chitosan-Based Drug Delivery Systems for Optimization of Photodynamic Therapy: a Review.
    Calixto GMF; de Annunzio SR; Victorelli FD; Frade ML; Ferreira PS; Chorilli M; Fontana CR
    AAPS PharmSciTech; 2019 Jul; 20(7):253. PubMed ID: 31309346
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Inorganic nanoparticles for enhanced photodynamic cancer therapy.
    Cheng SH; Lo LW
    Curr Drug Discov Technol; 2011 Sep; 8(3):250-68. PubMed ID: 21644924
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Photosensitizers Used in the Photodynamic Therapy of Rheumatoid Arthritis.
    Gallardo-Villagrán M; Leger DY; Liagre B; Therrien B
    Int J Mol Sci; 2019 Jul; 20(13):. PubMed ID: 31284664
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Folate-mediated and pH-responsive chidamide-bound micelles encapsulating photosensitizers for tumor-targeting photodynamic therapy.
    Ma Z; Hu P; Guo C; Wang D; Zhang X; Chen M; Wang Q; Sun M; Zeng P; Lu F; Sun L; She L; Zhang H; Yao J; Yang F
    Int J Nanomedicine; 2019; 14():5527-5540. PubMed ID: 31413561
    [No Abstract]   [Full Text] [Related]  

  • 59. Recent progress in photosensitizers for overcoming the challenges of photodynamic therapy: from molecular design to application.
    Zhao X; Liu J; Fan J; Chao H; Peng X
    Chem Soc Rev; 2021 Mar; 50(6):4185-4219. PubMed ID: 33527104
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Photoresponsive hydrogels for biomedical applications.
    Tomatsu I; Peng K; Kros A
    Adv Drug Deliv Rev; 2011 Nov; 63(14-15):1257-66. PubMed ID: 21745509
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.