These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 31460763)
1. Chromatin Structure and the Pioneering Transcription Factor FOXA1 Regulate TDG-Mediated Removal of 5-Formylcytosine from DNA. Deckard CE; Banerjee DR; Sczepanski JT J Am Chem Soc; 2019 Sep; 141(36):14110-14114. PubMed ID: 31460763 [TBL] [Abstract][Full Text] [Related]
2. Excision of 5-hydroxymethyluracil and 5-carboxylcytosine by the thymine DNA glycosylase domain: its structural basis and implications for active DNA demethylation. Hashimoto H; Hong S; Bhagwat AS; Zhang X; Cheng X Nucleic Acids Res; 2012 Nov; 40(20):10203-14. PubMed ID: 22962365 [TBL] [Abstract][Full Text] [Related]
3. Structural Basis for Excision of 5-Formylcytosine by Thymine DNA Glycosylase. Pidugu LS; Flowers JW; Coey CT; Pozharski E; Greenberg MM; Drohat AC Biochemistry; 2016 Nov; 55(45):6205-6208. PubMed ID: 27805810 [TBL] [Abstract][Full Text] [Related]
4. Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: potential implications for active demethylation of CpG sites. Maiti A; Drohat AC J Biol Chem; 2011 Oct; 286(41):35334-35338. PubMed ID: 21862836 [TBL] [Abstract][Full Text] [Related]
6. Genome-wide distribution of 5-formylcytosine in embryonic stem cells is associated with transcription and depends on thymine DNA glycosylase. Raiber EA; Beraldi D; Ficz G; Burgess HE; Branco MR; Murat P; Oxley D; Booth MJ; Reik W; Balasubramanian S Genome Biol; 2012 Aug; 13(8):R69. PubMed ID: 22902005 [TBL] [Abstract][Full Text] [Related]
7. Reversible chromatin condensation by the DNA repair and demethylation factor thymine DNA glycosylase. Deckard CE; Sczepanski JT Nucleic Acids Res; 2021 Mar; 49(5):2450-2459. PubMed ID: 33733652 [TBL] [Abstract][Full Text] [Related]
8. Gadd45a promotes DNA demethylation through TDG. Li Z; Gu TP; Weber AR; Shen JZ; Li BZ; Xie ZG; Yin R; Guo F; Liu X; Tang F; Wang H; Schär P; Xu GL Nucleic Acids Res; 2015 Apr; 43(8):3986-97. PubMed ID: 25845601 [TBL] [Abstract][Full Text] [Related]
9. Divergent mechanisms for enzymatic excision of 5-formylcytosine and 5-carboxylcytosine from DNA. Maiti A; Michelson AZ; Armwood CJ; Lee JK; Drohat AC J Am Chem Soc; 2013 Oct; 135(42):15813-22. PubMed ID: 24063363 [TBL] [Abstract][Full Text] [Related]
10. Weakened N3 Hydrogen Bonding by 5-Formylcytosine and 5-Carboxylcytosine Reduces Their Base-Pairing Stability. Dai Q; Sanstead PJ; Peng CS; Han D; He C; Tokmakoff A ACS Chem Biol; 2016 Feb; 11(2):470-7. PubMed ID: 26641274 [TBL] [Abstract][Full Text] [Related]
11. Differential stabilities and sequence-dependent base pair opening dynamics of Watson-Crick base pairs with 5-hydroxymethylcytosine, 5-formylcytosine, or 5-carboxylcytosine. Szulik MW; Pallan PS; Nocek B; Voehler M; Banerjee S; Brooks S; Joachimiak A; Egli M; Eichman BF; Stone MP Biochemistry; 2015 Feb; 54(5):1294-305. PubMed ID: 25632825 [TBL] [Abstract][Full Text] [Related]
12. Thymine DNA glycosylase specifically recognizes 5-carboxylcytosine-modified DNA. Zhang L; Lu X; Lu J; Liang H; Dai Q; Xu GL; Luo C; Jiang H; He C Nat Chem Biol; 2012 Feb; 8(4):328-30. PubMed ID: 22327402 [TBL] [Abstract][Full Text] [Related]
13. Excision of 5-Carboxylcytosine by Thymine DNA Glycosylase. Pidugu LS; Dai Q; Malik SS; Pozharski E; Drohat AC J Am Chem Soc; 2019 Nov; 141(47):18851-18861. PubMed ID: 31693361 [TBL] [Abstract][Full Text] [Related]
14. Structural basis of damage recognition by thymine DNA glycosylase: Key roles for N-terminal residues. Coey CT; Malik SS; Pidugu LS; Varney KM; Pozharski E; Drohat AC Nucleic Acids Res; 2016 Dec; 44(21):10248-10258. PubMed ID: 27580719 [TBL] [Abstract][Full Text] [Related]
15. Thymine DNA glycosylase mediates chromatin phase separation in a DNA methylation-dependent manner. McGregor LA; Deckard CE; Smolen JA; Porter GM; Sczepanski JT J Biol Chem; 2023 Jul; 299(7):104907. PubMed ID: 37307918 [TBL] [Abstract][Full Text] [Related]
16. Uncovering universal rules governing the selectivity of the archetypal DNA glycosylase TDG. Dodd T; Yan C; Kossmann BR; Martin K; Ivanov I Proc Natl Acad Sci U S A; 2018 Jun; 115(23):5974-5979. PubMed ID: 29784784 [TBL] [Abstract][Full Text] [Related]
17. In vivo genome-wide profiling reveals a tissue-specific role for 5-formylcytosine. Iurlaro M; McInroy GR; Burgess HE; Dean W; Raiber EA; Bachman M; Beraldi D; Balasubramanian S; Reik W Genome Biol; 2016 Jun; 17(1):141. PubMed ID: 27356509 [TBL] [Abstract][Full Text] [Related]
18. Defining the impact of sumoylation on substrate binding and catalysis by thymine DNA glycosylase. Coey CT; Drohat AC Nucleic Acids Res; 2018 Jun; 46(10):5159-5170. PubMed ID: 29660017 [TBL] [Abstract][Full Text] [Related]
19. Molecular basis for 5-carboxycytosine recognition by RNA polymerase II elongation complex. Wang L; Zhou Y; Xu L; Xiao R; Lu X; Chen L; Chong J; Li H; He C; Fu XD; Wang D Nature; 2015 Jul; 523(7562):621-5. PubMed ID: 26123024 [TBL] [Abstract][Full Text] [Related]
20. Thymine DNA glycosylase exhibits negligible affinity for nucleobases that it removes from DNA. Malik SS; Coey CT; Varney KM; Pozharski E; Drohat AC Nucleic Acids Res; 2015 Oct; 43(19):9541-52. PubMed ID: 26358812 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]