These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 31461215)

  • 1. The Crystallinity and Aspect Ratio of Cellulose Nanomaterials Determine Their Pro-Inflammatory and Immune Adjuvant Effects In Vitro and In Vivo.
    Wang X; Chang CH; Jiang J; Liu Q; Liao YP; Lu J; Li L; Liu X; Kim J; Ahmed A; Nel AE; Xia T
    Small; 2019 Oct; 15(42):e1901642. PubMed ID: 31461215
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering an effective immune adjuvant by designed control of shape and crystallinity of aluminum oxyhydroxide nanoparticles.
    Sun B; Ji Z; Liao YP; Wang M; Wang X; Dong J; Chang CH; Li R; Zhang H; Nel AE; Xia T
    ACS Nano; 2013 Dec; 7(12):10834-49. PubMed ID: 24261790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications.
    Du H; Liu W; Zhang M; Si C; Zhang X; Li B
    Carbohydr Polym; 2019 Apr; 209():130-144. PubMed ID: 30732792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms of the immune response cause by cationic and anionic surface functionalized cellulose nanocrystals using cell-based assays.
    Despres HW; Sabra A; Anderson P; Hemraz UD; Boluk Y; Sunasee R; Ckless K
    Toxicol In Vitro; 2019 Mar; 55():124-133. PubMed ID: 30576854
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanocellulose Length Determines the Differential Cytotoxic Effects and Inflammatory Responses in Macrophages and Hepatocytes.
    Li J; Wang X; Chang CH; Jiang J; Liu Q; Liu X; Liao YP; Ma T; Meng H; Xia T
    Small; 2021 Sep; 17(38):e2102545. PubMed ID: 34363305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellulose nanocrystal cationic derivative induces NLRP3 inflammasome-dependent IL-1β secretion associated with mitochondrial ROS production.
    Sunasee R; Araoye E; Pyram D; Hemraz UD; Boluk Y; Ckless K
    Biochem Biophys Rep; 2015 Dec; 4():1-9. PubMed ID: 30338301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of the properties of cellulose nanocrystals and cellulose nanofibrils isolated from bacteria, tunicate, and wood processed using acid, enzymatic, mechanical, and oxidative methods.
    Sacui IA; Nieuwendaal RC; Burnett DJ; Stranick SJ; Jorfi M; Weder C; Foster EJ; Olsson RT; Gilman JW
    ACS Appl Mater Interfaces; 2014 May; 6(9):6127-38. PubMed ID: 24746103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elucidating the fine-scale structural morphology of nanocellulose by nano infrared spectroscopy.
    Kotov N; Larsson PA; Jain K; Abitbol T; Cernescu A; Wågberg L; Johnson CM
    Carbohydr Polym; 2023 Feb; 302():120320. PubMed ID: 36604038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface coating of UF membranes to improve antifouling properties: A comparison study between cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs).
    Bai L; Liu Y; Ding A; Ren N; Li G; Liang H
    Chemosphere; 2019 Feb; 217():76-84. PubMed ID: 30414545
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lung biodurability and free radical production of cellulose nanomaterials.
    Stefaniak AB; Seehra MS; Fix NR; Leonard SS
    Inhal Toxicol; 2014 Oct; 26(12):733-49. PubMed ID: 25265049
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparative study on properties of micro and nanopapers produced from cellulose and cellulose nanofibres.
    Mtibe A; Linganiso LZ; Mathew AP; Oksman K; John MJ; Anandjiwala RD
    Carbohydr Polym; 2015 Mar; 118():1-8. PubMed ID: 25542099
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The reuse of wastepaper for the extraction of cellulose nanocrystals.
    Danial WH; Abdul Majid Z; Mohd Muhid MN; Triwahyono S; Bakar MB; Ramli Z
    Carbohydr Polym; 2015 Mar; 118():165-9. PubMed ID: 25542122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NADPH Oxidase-Dependent NLRP3 Inflammasome Activation and its Important Role in Lung Fibrosis by Multiwalled Carbon Nanotubes.
    Sun B; Wang X; Ji Z; Wang M; Liao YP; Chang CH; Li R; Zhang H; Nel AE; Xia T
    Small; 2015 May; 11(17):2087-97. PubMed ID: 25581126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A mechanistic insight into curcumin modulation of the IL-1β secretion and NLRP3 S-glutathionylation induced by needle-like cationic cellulose nanocrystals in myeloid cells.
    Guglielmo A; Sabra A; Elbery M; Cerveira MM; Ghenov F; Sunasee R; Ckless K
    Chem Biol Interact; 2017 Aug; 274():1-12. PubMed ID: 28669709
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-density lipoprotein inhibits serum amyloid A-mediated reactive oxygen species generation and NLRP3 inflammasome activation.
    Shridas P; De Beer MC; Webb NR
    J Biol Chem; 2018 Aug; 293(34):13257-13269. PubMed ID: 29976759
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NLRP3 inflammasome-activating arginine-based liposomes promote antigen presentations in dendritic cells.
    Li T; Zehner M; He J; Próchnicki T; Horvath G; Latz E; Burgdorf S; Takeoka S
    Int J Nanomedicine; 2019; 14():3503-3516. PubMed ID: 31190807
    [No Abstract]   [Full Text] [Related]  

  • 17. Crystallization and mechanical properties of reinforced PHBV composites using melt compounding: Effect of CNCs and CNFs.
    Jun D; Guomin Z; Mingzhu P; Leilei Z; Dagang L; Rui Z
    Carbohydr Polym; 2017 Jul; 168():255-262. PubMed ID: 28457448
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NLRP3 inflammasome signaling is activated by low-level lysosome disruption but inhibited by extensive lysosome disruption: roles for K+ efflux and Ca2+ influx.
    Katsnelson MA; Lozada-Soto KM; Russo HM; Miller BA; Dubyak GR
    Am J Physiol Cell Physiol; 2016 Jul; 311(1):C83-C100. PubMed ID: 27170638
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacterial cellulose nanocrystals obtained through enzymatic and acidic routes: A comparative study of their main properties and in vitro biological responses.
    Claro AM; Dias IKR; Fontes ML; Colturato VMM; Lima LR; Sávio LB; Berto GL; Arantes V; Barud HDS
    Carbohydr Res; 2024 May; 539():109104. PubMed ID: 38643706
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of QS-21 as an Inflammasome-activating Molecular Component of Saponin Adjuvants.
    Marty-Roix R; Vladimer GI; Pouliot K; Weng D; Buglione-Corbett R; West K; MacMicking JD; Chee JD; Wang S; Lu S; Lien E
    J Biol Chem; 2016 Jan; 291(3):1123-36. PubMed ID: 26555265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.