BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 31461215)

  • 1. The Crystallinity and Aspect Ratio of Cellulose Nanomaterials Determine Their Pro-Inflammatory and Immune Adjuvant Effects In Vitro and In Vivo.
    Wang X; Chang CH; Jiang J; Liu Q; Liao YP; Lu J; Li L; Liu X; Kim J; Ahmed A; Nel AE; Xia T
    Small; 2019 Oct; 15(42):e1901642. PubMed ID: 31461215
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering an effective immune adjuvant by designed control of shape and crystallinity of aluminum oxyhydroxide nanoparticles.
    Sun B; Ji Z; Liao YP; Wang M; Wang X; Dong J; Chang CH; Li R; Zhang H; Nel AE; Xia T
    ACS Nano; 2013 Dec; 7(12):10834-49. PubMed ID: 24261790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications.
    Du H; Liu W; Zhang M; Si C; Zhang X; Li B
    Carbohydr Polym; 2019 Apr; 209():130-144. PubMed ID: 30732792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms of the immune response cause by cationic and anionic surface functionalized cellulose nanocrystals using cell-based assays.
    Despres HW; Sabra A; Anderson P; Hemraz UD; Boluk Y; Sunasee R; Ckless K
    Toxicol In Vitro; 2019 Mar; 55():124-133. PubMed ID: 30576854
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanocellulose Length Determines the Differential Cytotoxic Effects and Inflammatory Responses in Macrophages and Hepatocytes.
    Li J; Wang X; Chang CH; Jiang J; Liu Q; Liu X; Liao YP; Ma T; Meng H; Xia T
    Small; 2021 Sep; 17(38):e2102545. PubMed ID: 34363305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellulose nanocrystal cationic derivative induces NLRP3 inflammasome-dependent IL-1β secretion associated with mitochondrial ROS production.
    Sunasee R; Araoye E; Pyram D; Hemraz UD; Boluk Y; Ckless K
    Biochem Biophys Rep; 2015 Dec; 4():1-9. PubMed ID: 30338301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of the properties of cellulose nanocrystals and cellulose nanofibrils isolated from bacteria, tunicate, and wood processed using acid, enzymatic, mechanical, and oxidative methods.
    Sacui IA; Nieuwendaal RC; Burnett DJ; Stranick SJ; Jorfi M; Weder C; Foster EJ; Olsson RT; Gilman JW
    ACS Appl Mater Interfaces; 2014 May; 6(9):6127-38. PubMed ID: 24746103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Decoy Receptor 3 Inhibits Monosodium Urate-Induced NLRP3 Inflammasome Activation
    Pan YG; Huang MT; Sekar P; Huang DY; Lin WW; Hsieh SL
    Front Immunol; 2021; 12():638676. PubMed ID: 33746978
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elucidating the fine-scale structural morphology of nanocellulose by nano infrared spectroscopy.
    Kotov N; Larsson PA; Jain K; Abitbol T; Cernescu A; Wågberg L; Johnson CM
    Carbohydr Polym; 2023 Feb; 302():120320. PubMed ID: 36604038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface coating of UF membranes to improve antifouling properties: A comparison study between cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs).
    Bai L; Liu Y; Ding A; Ren N; Li G; Liang H
    Chemosphere; 2019 Feb; 217():76-84. PubMed ID: 30414545
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lung biodurability and free radical production of cellulose nanomaterials.
    Stefaniak AB; Seehra MS; Fix NR; Leonard SS
    Inhal Toxicol; 2014 Oct; 26(12):733-49. PubMed ID: 25265049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparative study on properties of micro and nanopapers produced from cellulose and cellulose nanofibres.
    Mtibe A; Linganiso LZ; Mathew AP; Oksman K; John MJ; Anandjiwala RD
    Carbohydr Polym; 2015 Mar; 118():1-8. PubMed ID: 25542099
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The reuse of wastepaper for the extraction of cellulose nanocrystals.
    Danial WH; Abdul Majid Z; Mohd Muhid MN; Triwahyono S; Bakar MB; Ramli Z
    Carbohydr Polym; 2015 Mar; 118():165-9. PubMed ID: 25542122
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NADPH Oxidase-Dependent NLRP3 Inflammasome Activation and its Important Role in Lung Fibrosis by Multiwalled Carbon Nanotubes.
    Sun B; Wang X; Ji Z; Wang M; Liao YP; Chang CH; Li R; Zhang H; Nel AE; Xia T
    Small; 2015 May; 11(17):2087-97. PubMed ID: 25581126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A mechanistic insight into curcumin modulation of the IL-1β secretion and NLRP3 S-glutathionylation induced by needle-like cationic cellulose nanocrystals in myeloid cells.
    Guglielmo A; Sabra A; Elbery M; Cerveira MM; Ghenov F; Sunasee R; Ckless K
    Chem Biol Interact; 2017 Aug; 274():1-12. PubMed ID: 28669709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-density lipoprotein inhibits serum amyloid A-mediated reactive oxygen species generation and NLRP3 inflammasome activation.
    Shridas P; De Beer MC; Webb NR
    J Biol Chem; 2018 Aug; 293(34):13257-13269. PubMed ID: 29976759
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NLRP3 inflammasome-activating arginine-based liposomes promote antigen presentations in dendritic cells.
    Li T; Zehner M; He J; Próchnicki T; Horvath G; Latz E; Burgdorf S; Takeoka S
    Int J Nanomedicine; 2019; 14():3503-3516. PubMed ID: 31190807
    [No Abstract]   [Full Text] [Related]  

  • 18. Crystallization and mechanical properties of reinforced PHBV composites using melt compounding: Effect of CNCs and CNFs.
    Jun D; Guomin Z; Mingzhu P; Leilei Z; Dagang L; Rui Z
    Carbohydr Polym; 2017 Jul; 168():255-262. PubMed ID: 28457448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NLRP3 inflammasome signaling is activated by low-level lysosome disruption but inhibited by extensive lysosome disruption: roles for K+ efflux and Ca2+ influx.
    Katsnelson MA; Lozada-Soto KM; Russo HM; Miller BA; Dubyak GR
    Am J Physiol Cell Physiol; 2016 Jul; 311(1):C83-C100. PubMed ID: 27170638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacterial cellulose nanocrystals obtained through enzymatic and acidic routes: A comparative study of their main properties and in vitro biological responses.
    Claro AM; Dias IKR; Fontes ML; Colturato VMM; Lima LR; Sávio LB; Berto GL; Arantes V; Barud HDS
    Carbohydr Res; 2024 May; 539():109104. PubMed ID: 38643706
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.