BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

374 related articles for article (PubMed ID: 31461342)

  • 1. Identification of the intermediate filament protein synemin/SYNM as a target of myocardin family coactivators.
    Swärd K; Krawczyk KK; Morén B; Zhu B; Matic L; Holmberg J; Hedin U; Uvelius B; Stenkula K; Rippe C
    Am J Physiol Cell Physiol; 2019 Dec; 317(6):C1128-C1142. PubMed ID: 31461342
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NG2/CSPG4, CD146/MCAM and VAP1/AOC3 are regulated by myocardin-related transcription factors in smooth muscle cells.
    Rippe C; Morén B; Liu L; Stenkula KG; Mustaniemi J; Wennström M; Swärd K
    Sci Rep; 2021 Mar; 11(1):5955. PubMed ID: 33727640
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression of endothelin type B receptors (EDNRB) on smooth muscle cells is controlled by MKL2, ternary complex factors, and actin dynamics.
    Krawczyk KK; Skovsted GF; Perisic L; Dreier R; Berg JO; Hedin U; Rippe C; Swärd K
    Am J Physiol Cell Physiol; 2018 Dec; 315(6):C873-C884. PubMed ID: 30332284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Smooth muscle cell-specific transcription is regulated by nuclear localization of the myocardin-related transcription factors.
    Hinson JS; Medlin MD; Lockman K; Taylor JM; Mack CP
    Am J Physiol Heart Circ Physiol; 2007 Feb; 292(2):H1170-80. PubMed ID: 16997888
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Myocardin Family Members Drive Formation of Caveolae.
    Krawczyk KK; Yao Mattisson I; Ekman M; Oskolkov N; Grantinge R; Kotowska D; Olde B; Hansson O; Albinsson S; Miano JM; Rippe C; Swärd K
    PLoS One; 2015; 10(8):e0133931. PubMed ID: 26244347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nexilin/NEXN controls actin polymerization in smooth muscle and is regulated by myocardin family coactivators and YAP.
    Zhu B; Rippe C; Holmberg J; Zeng S; Perisic L; Albinsson S; Hedin U; Uvelius B; Swärd K
    Sci Rep; 2018 Aug; 8(1):13025. PubMed ID: 30158653
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coronary Disease-Associated Gene
    Nagao M; Lyu Q; Zhao Q; Wirka RC; Bagga J; Nguyen T; Cheng P; Kim JB; Pjanic M; Miano JM; Quertermous T
    Circ Res; 2020 Feb; 126(4):517-529. PubMed ID: 31815603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sphingosine 1-phosphate stimulates smooth muscle cell differentiation and proliferation by activating separate serum response factor co-factors.
    Lockman K; Hinson JS; Medlin MD; Morris D; Taylor JM; Mack CP
    J Biol Chem; 2004 Oct; 279(41):42422-30. PubMed ID: 15292266
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MYOSLID Is a Novel Serum Response Factor-Dependent Long Noncoding RNA That Amplifies the Vascular Smooth Muscle Differentiation Program.
    Zhao J; Zhang W; Lin M; Wu W; Jiang P; Tou E; Xue M; Richards A; Jourd'heuil D; Asif A; Zheng D; Singer HA; Miano JM; Long X
    Arterioscler Thromb Vasc Biol; 2016 Oct; 36(10):2088-99. PubMed ID: 27444199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Myocardin is a critical serum response factor cofactor in the transcriptional program regulating smooth muscle cell differentiation.
    Du KL; Ip HS; Li J; Chen M; Dandre F; Yu W; Lu MM; Owens GK; Parmacek MS
    Mol Cell Biol; 2003 Apr; 23(7):2425-37. PubMed ID: 12640126
    [TBL] [Abstract][Full Text] [Related]  

  • 11. HERP1 inhibits myocardin-induced vascular smooth muscle cell differentiation by interfering with SRF binding to CArG box.
    Doi H; Iso T; Yamazaki M; Akiyama H; Kanai H; Sato H; Kawai-Kowase K; Tanaka T; Maeno T; Okamoto E; Arai M; Kedes L; Kurabayashi M
    Arterioscler Thromb Vasc Biol; 2005 Nov; 25(11):2328-34. PubMed ID: 16151017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Testosterone Rescues the De-Differentiation of Smooth Muscle Cells Through Serum Response Factor/Myocardin.
    Leimgruber C; Quintar AA; Peinetti N; Scalerandi MV; Nicola JP; Miano JM; Maldonado CA
    J Cell Physiol; 2017 Oct; 232(10):2806-2817. PubMed ID: 27861881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Serum response factor-dependent MicroRNAs regulate gastrointestinal smooth muscle cell phenotypes.
    Park C; Hennig GW; Sanders KM; Cho JH; Hatton WJ; Redelman D; Park JK; Ward SM; Miano JM; Yan W; Ro S
    Gastroenterology; 2011 Jul; 141(1):164-75. PubMed ID: 21473868
    [TBL] [Abstract][Full Text] [Related]  

  • 14. G6PD activity contributes to the regulation of histone acetylation and gene expression in smooth muscle cells and to the pathogenesis of vascular diseases.
    Dhagia V; Kitagawa A; Jacob C; Zheng C; D'Alessandro A; Edwards JG; Rocic P; Gupte R; Gupte SA
    Am J Physiol Heart Circ Physiol; 2021 Mar; 320(3):H999-H1016. PubMed ID: 33416454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Similar regulatory mechanisms of caveolins and cavins by myocardin family coactivators in arterial and bladder smooth muscle.
    Zhu B; Rippe C; Thi Hien T; Zeng J; Albinsson S; Stenkula KG; Uvelius B; Swärd K
    PLoS One; 2017; 12(5):e0176759. PubMed ID: 28542204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. YY1 directly interacts with myocardin to repress the triad myocardin/SRF/CArG box-mediated smooth muscle gene transcription during smooth muscle phenotypic modulation.
    Zheng JP; He X; Liu F; Yin S; Wu S; Yang M; Zhao J; Dai X; Jiang H; Yu L; Yin Q; Ju D; Li C; Lipovich L; Xie Y; Zhang K; Li HJ; Zhou J; Li L
    Sci Rep; 2020 Dec; 10(1):21781. PubMed ID: 33311559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitogen-activated protein kinase 14 is a novel negative regulatory switch for the vascular smooth muscle cell contractile gene program.
    Long X; Cowan SL; Miano JM
    Arterioscler Thromb Vasc Biol; 2013 Feb; 33(2):378-86. PubMed ID: 23175675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Muscle-specific signaling mechanism that links actin dynamics to serum response factor.
    Kuwahara K; Barrientos T; Pipes GC; Li S; Olson EN
    Mol Cell Biol; 2005 Apr; 25(8):3173-81. PubMed ID: 15798203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of the Muscarinic M
    Liu L; Rippe C; Hansson O; Kryvokhyzha D; Fisher S; Ekman M; Swärd K
    Front Physiol; 2021; 12():710968. PubMed ID: 34539433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential Role of Glycogen Synthase Kinase-3β in Regulation of Myocardin Activity in Human Vascular Smooth Muscle Cells.
    Zhou YX; Shi Z; Singh P; Yin H; Yu YN; Li L; Walsh MP; Gui Y; Zheng XL
    J Cell Physiol; 2016 Feb; 231(2):393-402. PubMed ID: 26129946
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.