These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
316 related articles for article (PubMed ID: 31461640)
1. Identification of aurintricarboxylic acid as a potent allosteric antagonist of P2X1 and P2X3 receptors. Obrecht AS; Urban N; Schaefer M; Röse A; Kless A; Meents JE; Lampert A; Abdelrahman A; Müller CE; Schmalzing G; Hausmann R Neuropharmacology; 2019 Nov; 158():107749. PubMed ID: 31461640 [TBL] [Abstract][Full Text] [Related]
2. BLU-5937: A selective P2X3 antagonist with potent anti-tussive effect and no taste alteration. Garceau D; Chauret N Pulm Pharmacol Ther; 2019 Jun; 56():56-62. PubMed ID: 30902655 [TBL] [Abstract][Full Text] [Related]
3. A hydrophobic residue in position 15 of the rP2X3 receptor slows desensitization and reveals properties beneficial for pharmacological analysis and high-throughput screening. Hausmann R; Bahrenberg G; Kuhlmann D; Schumacher M; Braam U; Bieler D; Schlusche I; Schmalzing G Neuropharmacology; 2014 Apr; 79():603-15. PubMed ID: 24452010 [TBL] [Abstract][Full Text] [Related]
4. Flexible subunit stoichiometry of functional human P2X2/3 heteromeric receptors. Kowalski M; Hausmann R; Schmid J; Dopychai A; Stephan G; Tang Y; Schmalzing G; Illes P; Rubini P Neuropharmacology; 2015 Dec; 99():115-30. PubMed ID: 26184350 [TBL] [Abstract][Full Text] [Related]
5. Comparative analysis of P2X1, P2X2, P2X3, and P2X4 receptor subunits in rat nodose ganglion neurons. Wang L; Feng D; Yan H; Wang Z; Pei L PLoS One; 2014; 9(5):e96699. PubMed ID: 24798490 [TBL] [Abstract][Full Text] [Related]
6. Lidocaine preferentially inhibits the function of purinergic P2X7 receptors expressed in Xenopus oocytes. Okura D; Horishita T; Ueno S; Yanagihara N; Sudo Y; Uezono Y; Minami T; Kawasaki T; Sata T Anesth Analg; 2015 Mar; 120(3):597-605. PubMed ID: 25695577 [TBL] [Abstract][Full Text] [Related]
7. Selective potentiation of homomeric P2X2 ionotropic ATP receptors by a fast non-genomic action of progesterone. De Roo M; Boué-Grabot E; Schlichter R Neuropharmacology; 2010 Mar; 58(3):569-77. PubMed ID: 20004677 [TBL] [Abstract][Full Text] [Related]
8. The P2X3 antagonist P1, P5-di[inosine-5'] pentaphosphate binds to the desensitized state of the receptor in rat dorsal root ganglion neurons. Ford KK; Matchett M; Krause JE; Yu W J Pharmacol Exp Ther; 2005 Oct; 315(1):405-13. PubMed ID: 16014755 [TBL] [Abstract][Full Text] [Related]
9. Modulatory activity of extracellular H+ and Zn2+ on ATP-responses at rP2X1 and rP2X3 receptors. Wildman SS; King BF; Burnstock G Br J Pharmacol; 1999 Sep; 128(2):486-92. PubMed ID: 10510462 [TBL] [Abstract][Full Text] [Related]
10. Discovery of Potent Antiallodynic Agents for Neuropathic Pain Targeting P2X3 Receptors. Jung YH; Kim YO; Lin H; Cho JH; Park JH; Lee SD; Bae J; Kang KM; Kim YG; Pae AN; Ko H; Park CS; Yoon MH; Kim YC ACS Chem Neurosci; 2017 Jul; 8(7):1465-1478. PubMed ID: 28323403 [TBL] [Abstract][Full Text] [Related]
11. Identification and characterization of a selective allosteric antagonist of human P2X4 receptor channels. Ase AR; Honson NS; Zaghdane H; Pfeifer TA; Séguéla P Mol Pharmacol; 2015 Apr; 87(4):606-16. PubMed ID: 25597706 [TBL] [Abstract][Full Text] [Related]
12. P2X1 and P2X2 receptors in the central nervous system as possible drug targets. Hausmann R; Schmalzing G CNS Neurol Disord Drug Targets; 2012 Sep; 11(6):675-86. PubMed ID: 22963438 [TBL] [Abstract][Full Text] [Related]
13. A317491 relieved HIV gp120-associated neuropathic pain involved in P2X Yi Z; Rao S; Ouyang S; Bai Y; Yang J; Ma Y; Han X; Wu B; Zou L; Jia T; Zhao S; Hu X; Lei Q; Gao Y; Liu S; Xu H; Zhang C; Liang S; Li G Brain Res Bull; 2017 Apr; 130():81-89. PubMed ID: 28065732 [TBL] [Abstract][Full Text] [Related]
14. Discovery and Structure Relationships of Salicylanilide Derivatives as Potent, Non-acidic P2X1 Receptor Antagonists. Tian M; Abdelrahman A; Baqi Y; Fuentes E; Azazna D; Spanier C; Densborn S; Hinz S; Schmid R; Müller CE J Med Chem; 2020 Jun; 63(11):6164-6178. PubMed ID: 32345019 [TBL] [Abstract][Full Text] [Related]
15. Distribution of P2X1, P2X2, and P2X3 receptor subunits in rat primary afferents: relation to population markers and specific cell types. Petruska JC; Cooper BY; Gu JG; Rau KK; Johnson RD J Chem Neuroanat; 2000 Nov; 20(2):141-62. PubMed ID: 11118807 [TBL] [Abstract][Full Text] [Related]
16. Lithocholic acid inhibits P2X2 and potentiates P2X4 receptor channel gating. Sivcev S; Slavikova B; Ivetic M; Knezu M; Kudova E; Zemkova H J Steroid Biochem Mol Biol; 2020 Sep; 202():105725. PubMed ID: 32652201 [TBL] [Abstract][Full Text] [Related]
17. Structure-activity relationships of pyridoxal phosphate derivatives as potent and selective antagonists of P2X1 receptors. Kim YC; Brown SG; Harden TK; Boyer JL; Dubyak G; King BF; Burnstock G; Jacobson KA J Med Chem; 2001 Feb; 44(3):340-9. PubMed ID: 11462975 [TBL] [Abstract][Full Text] [Related]
18. Update on novel purinergic P2X3 and P2X2/3 receptor antagonists and their potential therapeutic applications. Marucci G; Dal Ben D; Buccioni M; Martí Navia A; Spinaci A; Volpini R; Lambertucci C Expert Opin Ther Pat; 2019 Dec; 29(12):943-963. PubMed ID: 31726893 [No Abstract] [Full Text] [Related]
19. Modulation of P2X3 and P2X2/3 Receptors by Monoclonal Antibodies. Shcherbatko A; Foletti D; Poulsen K; Strop P; Zhu G; Hasa-Moreno A; Melton Witt J; Loo C; Krimm S; Pios A; Yu J; Brown C; Lee JK; Stroud R; Rajpal A; Shelton D J Biol Chem; 2016 Jun; 291(23):12254-70. PubMed ID: 27129281 [TBL] [Abstract][Full Text] [Related]
20. Differential expression and pharmacology of native P2X receptors in rat and primate sensory neurons. Serrano A; Mo G; Grant R; Paré M; O'Donnell D; Yu XH; Tomaszewski MJ; Perkins MN; Séguéla P; Cao CQ J Neurosci; 2012 Aug; 32(34):11890-6. PubMed ID: 22915129 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]