BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 31461642)

  • 1. An In Vitro Human Segmentation Clock Model Derived from Embryonic Stem Cells.
    Chu LF; Mamott D; Ni Z; Bacher R; Liu C; Swanson S; Kendziorski C; Stewart R; Thomson JA
    Cell Rep; 2019 Aug; 28(9):2247-2255.e5. PubMed ID: 31461642
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recapitulating the human segmentation clock with pluripotent stem cells.
    Matsuda M; Yamanaka Y; Uemura M; Osawa M; Saito MK; Nagahashi A; Nishio M; Guo L; Ikegawa S; Sakurai S; Kihara S; Maurissen TL; Nakamura M; Matsumoto T; Yoshitomi H; Ikeya M; Kawakami N; Yamamoto T; Woltjen K; Ebisuya M; Toguchida J; Alev C
    Nature; 2020 Apr; 580(7801):124-129. PubMed ID: 32238941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The vertebrate segmentation clock and its role in skeletal birth defects.
    Shifley ET; Cole SE
    Birth Defects Res C Embryo Today; 2007 Jun; 81(2):121-33. PubMed ID: 17600784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The many roles of Notch signaling during vertebrate somitogenesis.
    Wahi K; Bochter MS; Cole SE
    Semin Cell Dev Biol; 2016 Jan; 49():68-75. PubMed ID: 25483003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The long and short of it: somite formation in mice.
    Gridley T
    Dev Dyn; 2006 Sep; 235(9):2330-6. PubMed ID: 16724326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ES cell-derived presomitic mesoderm-like tissues for analysis of synchronized oscillations in the segmentation clock.
    Matsumiya M; Tomita T; Yoshioka-Kobayashi K; Isomura A; Kageyama R
    Development; 2018 Feb; 145(4):. PubMed ID: 29437832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coupling delay controls synchronized oscillation in the segmentation clock.
    Yoshioka-Kobayashi K; Matsumiya M; Niino Y; Isomura A; Kori H; Miyawaki A; Kageyama R
    Nature; 2020 Apr; 580(7801):119-123. PubMed ID: 31915376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modelling coupled oscillations in the Notch, Wnt, and FGF signaling pathways during somitogenesis: a comprehensive mathematical model.
    Wang HY; Huang YX; Zheng LH; Bao YL; Sun LG; Wu Y; Yu CL; Song ZB; Sun Y; Wang GN; Ma ZQ; Li YX
    Comput Intell Neurosci; 2015; 2015():387409. PubMed ID: 25866502
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Disruption of the somitic molecular clock causes abnormal vertebral segmentation.
    Sparrow DB; Chapman G; Turnpenny PD; Dunwoodie SL
    Birth Defects Res C Embryo Today; 2007 Jun; 81(2):93-110. PubMed ID: 17600782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oscillator mechanism of Notch pathway in the segmentation clock.
    Kageyama R; Masamizu Y; Niwa Y
    Dev Dyn; 2007 Jun; 236(6):1403-9. PubMed ID: 17366573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interfering with Wnt signalling alters the periodicity of the segmentation clock.
    Gibb S; Zagorska A; Melton K; Tenin G; Vacca I; Trainor P; Maroto M; Dale JK
    Dev Biol; 2009 Jun; 330(1):21-31. PubMed ID: 19272372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling the segmentation clock as a network of coupled oscillations in the Notch, Wnt and FGF signaling pathways.
    Goldbeter A; Pourquié O
    J Theor Biol; 2008 Jun; 252(3):574-85. PubMed ID: 18308339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oscillatory links of Fgf signaling and Hes7 in the segmentation clock.
    Harima Y; Kageyama R
    Curr Opin Genet Dev; 2013 Aug; 23(4):484-90. PubMed ID: 23465881
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oscillatory Control of Notch Signaling in Development.
    Kageyama R; Shimojo H; Isomura A
    Adv Exp Med Biol; 2018; 1066():265-277. PubMed ID: 30030831
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FGF signaling acts upstream of the NOTCH and WNT signaling pathways to control segmentation clock oscillations in mouse somitogenesis.
    Wahl MB; Deng C; Lewandoski M; Pourquié O
    Development; 2007 Nov; 134(22):4033-41. PubMed ID: 17965051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oscillatory gene expression and somitogenesis.
    Kageyama R; Niwa Y; Isomura A; González A; Harima Y
    Wiley Interdiscip Rev Dev Biol; 2012; 1(5):629-41. PubMed ID: 23799565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dact1 presomitic mesoderm expression oscillates in phase with Axin2 in the somitogenesis clock of mice.
    Suriben R; Fisher DA; Cheyette BN
    Dev Dyn; 2006 Nov; 235(11):3177-83. PubMed ID: 17013874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Periodic notch inhibition by lunatic fringe underlies the chick segmentation clock.
    Dale JK; Maroto M; Dequeant ML; Malapert P; McGrew M; Pourquie O
    Nature; 2003 Jan; 421(6920):275-8. PubMed ID: 12529645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro characterization of the human segmentation clock.
    Diaz-Cuadros M; Wagner DE; Budjan C; Hubaud A; Tarazona OA; Donelly S; Michaut A; Al Tanoury Z; Yoshioka-Kobayashi K; Niino Y; Kageyama R; Miyawaki A; Touboul J; Pourquié O
    Nature; 2020 Apr; 580(7801):113-118. PubMed ID: 31915384
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The period of the somite segmentation clock is sensitive to Notch activity.
    Kim W; Matsui T; Yamao M; Ishibashi M; Tamada K; Takumi T; Kohno K; Oba S; Ishii S; Sakumura Y; Bessho Y
    Mol Biol Cell; 2011 Sep; 22(18):3541-9. PubMed ID: 21795391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.