These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 31461747)

  • 1. Orbitofrontal cortex is selectively activated in a primate model of attentional bias to cocaine cues.
    Baeg E; Jedema HP; Bradberry CW
    Neuropsychopharmacology; 2020 Mar; 45(4):675-682. PubMed ID: 31461747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phasic alterations in dopamine and serotonin release in striatum and prefrontal cortex in response to cocaine predictive cues in behaving rhesus macaques.
    Bradberry CW; Rubino SR
    Neuropsychopharmacology; 2004 Apr; 29(4):676-85. PubMed ID: 14747825
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Orbitofrontal and anterior cingulate cortex neurons selectively process cocaine-associated environmental cues in the rhesus monkey.
    Baeg EH; Jackson ME; Jedema HP; Bradberry CW
    J Neurosci; 2009 Sep; 29(37):11619-27. PubMed ID: 19759309
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atomoxetine effects on attentional bias to drug-related cues in cocaine dependent individuals.
    Passamonti L; Luijten M; Ziauddeen H; Coyle-Gilchrist ITS; Rittman T; Brain SAE; Regenthal R; Franken IHA; Sahakian BJ; Bullmore ET; Robbins TW; Ersche KD
    Psychopharmacology (Berl); 2017 Aug; 234(15):2289-2297. PubMed ID: 28551713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional consequences of cocaine expectation: findings in a non-human primate model of cocaine self-administration.
    Porrino LJ; Beveridge TJ; Smith HR; Nader MA
    Addict Biol; 2016 May; 21(3):519-29. PubMed ID: 25684556
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cocaine cue-induced dopamine release in the human prefrontal cortex.
    Milella MS; Fotros A; Gravel P; Casey KF; Larcher K; Verhaeghe JA; Cox SM; Reader AJ; Dagher A; Benkelfat C; Leyton M
    J Psychiatry Neurosci; 2016 Aug; 41(5):322-30. PubMed ID: 26900792
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of attentional bias modification therapy on the cue reactivity and cognitive control networks in participants with cocaine use disorders.
    Mayer AR; Dodd AB; Wilcox CE; Klimaj SD; Claus ED; Bryan AD
    Am J Drug Alcohol Abuse; 2020 May; 46(3):357-367. PubMed ID: 31730369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative analysis of the modulation of perineuronal nets in the prefrontal cortex of rats during protracted withdrawal from cocaine, heroin and sucrose self-administration.
    Roura-Martínez D; Díaz-Bejarano P; Ucha M; Paiva RR; Ambrosio E; Higuera-Matas A
    Neuropharmacology; 2020 Dec; 180():108290. PubMed ID: 32888961
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multivariate pattern analysis of the neural correlates of smoking cue attentional bias.
    Elton A; Chanon VW; Boettiger CA
    Pharmacol Biochem Behav; 2019 May; 180():1-10. PubMed ID: 30844426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acute methylphenidate administration reduces cocaine-cue attentional bias.
    Alcorn JL; Strickland JC; Lile JA; Stoops WW; Rush CR
    Prog Neuropsychopharmacol Biol Psychiatry; 2020 Dec; 103():109974. PubMed ID: 32454161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of acute and chronic neurochemical effects of cocaine and cocaine cues in rhesus monkeys and rodents: focus on striatal and cortical dopamine systems.
    Bradberry CW
    Rev Neurosci; 2008; 19(2-3):113-28. PubMed ID: 18751519
    [TBL] [Abstract][Full Text] [Related]  

  • 12. D1, but not D2, receptor blockade within the infralimbic and medial orbitofrontal cortex impairs cocaine seeking in a region-specific manner.
    Cosme CV; Gutman AL; Worth WR; LaLumiere RT
    Addict Biol; 2018 Jan; 23(1):16-27. PubMed ID: 27578356
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Frontostriatal Circuit Dynamics Correlate with Cocaine Cue-Evoked Behavioral Arousal during Early Abstinence.
    Smith WC; Rosenberg MH; Claar LD; Chang V; Shah SN; Walwyn WM; Evans CJ; Masmanidis SC
    eNeuro; 2016; 3(3):. PubMed ID: 27390774
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural Correlates of Exposure to Cocaine Cues in Rhesus Monkeys: Modulation by the Dopamine Transporter.
    Porrino LJ; Miller MD; Smith HR; Nader SH; Nader MA
    Biol Psychiatry; 2016 Nov; 80(9):702-710. PubMed ID: 27059874
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intermittent intake of rapid cocaine injections promotes the risk of relapse and increases mesocorticolimbic BDNF levels during abstinence.
    Gueye AB; Allain F; Samaha AN
    Neuropsychopharmacology; 2019 May; 44(6):1027-1035. PubMed ID: 30405186
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Persistent strengthening of the prefrontal cortex - nucleus accumbens pathway during incubation of cocaine-seeking behavior.
    Luís C; Cannella N; Spanagel R; Köhr G
    Neurobiol Learn Mem; 2017 Feb; 138():281-290. PubMed ID: 27720809
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cortical and sub-cortical effects in primate models of cocaine use: implications for addiction and the increased risk of psychiatric illness.
    Bradberry CW
    Neurotox Res; 2011 Feb; 19(2):235-42. PubMed ID: 20151242
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Individual differences in anterior cingulate activation associated with attentional bias predict cocaine use after treatment.
    Marhe R; Luijten M; van de Wetering BJ; Smits M; Franken IH
    Neuropsychopharmacology; 2013 May; 38(6):1085-93. PubMed ID: 23303067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Orbitofrontal and insular cortex: neural responses to cocaine-associated cues and cocaine self-administration.
    Guillem K; Kravitz AV; Moorman DE; Peoples LL
    Synapse; 2010 Jan; 64(1):1-13. PubMed ID: 19725114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Beer? Over here! Examining attentional bias towards alcoholic and appetitive stimuli in a visual search eye-tracking task.
    Pennington CR; Qureshi AW; Monk RL; Greenwood K; Heim D
    Psychopharmacology (Berl); 2019 Dec; 236(12):3465-3476. PubMed ID: 31286155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.