These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 31461925)

  • 61. Sustained release of exendin-4 from tannic acid/Fe (III) nanoparticles prolongs blood glycemic control in a mouse model of type II diabetes.
    He Z; Hu Y; Gui Z; Zhou Y; Nie T; Zhu J; Liu Z; Chen K; Liu L; Leong KW; Cao P; Chen Y; Mao HQ
    J Control Release; 2019 May; 301():119-128. PubMed ID: 30894322
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Chemistry and Geometry of Counterions Used in Hydrophobic Ion Pairing Control Internal Liquid Crystal Phase Behavior and Thereby Drug Release.
    Ristroph K; Salim M; Clulow AJ; Boyd BJ; Prud'homme RK
    Mol Pharm; 2021 Apr; 18(4):1666-1676. PubMed ID: 33656349
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Multi-scale simulations of polymeric nanoparticle aggregation during rapid solvent exchange.
    Li N; Nikoubashman A; Panagiotopoulos AZ
    J Chem Phys; 2018 Aug; 149(8):084904. PubMed ID: 30193496
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Self-assembly of ibuprofen and bovine serum albumin-dextran conjugates leading to effective loading of the drug.
    Li J; Yao P
    Langmuir; 2009 Jun; 25(11):6385-91. PubMed ID: 19371045
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Development of highly stabilized curcumin nanoparticles by flash nanoprecipitation and lyophilization.
    Chow SF; Wan KY; Cheng KK; Wong KW; Sun CC; Baum L; Chow AH
    Eur J Pharm Biopharm; 2015 Aug; 94():436-49. PubMed ID: 26143368
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Biomolecular Complexation on the "Wrong Side": A Case Study of the Influence of Salts and Sugars on the Interactions between Bovine Serum Albumin and Sodium Polystyrene Sulfonate.
    Simončič M; Hritz J; Lukšič M
    Biomacromolecules; 2022 Oct; 23(10):4412-4426. PubMed ID: 36134887
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Encapsulation of albumin in self-assembled layer-by-layer microcapsules: comparison of co-precipitation and adsorption techniques.
    Labala S; Mandapalli PK; Bhatnagar S; Venuganti VV
    Drug Dev Ind Pharm; 2015; 41(8):1302-10. PubMed ID: 25104114
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Effect of cationic grafted copolymer structure on the encapsulation of bovine serum albumin.
    Flynn N; Topal ÇÖ; Hikkaduwa Koralege RS; Hartson S; Ranjan A; Liu J; Pope C; Ramsey JD
    Mater Sci Eng C Mater Biol Appl; 2016 May; 62():524-31. PubMed ID: 26952455
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Amorphous nanoparticles by self-assembly: processing for controlled release of hydrophobic molecules.
    Feng J; Zhang Y; McManus SA; Qian R; Ristroph KD; Ramachandruni H; Gong K; White CE; Rawal A; Prud'homme RK
    Soft Matter; 2019 Mar; 15(11):2400-2410. PubMed ID: 30776040
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Charge-controlled nanoprecipitation as a modular approach to ultrasmall polymer nanocarriers: making bright and stable nanoparticles.
    Reisch A; Runser A; Arntz Y; Mély Y; Klymchenko AS
    ACS Nano; 2015 May; 9(5):5104-16. PubMed ID: 25894117
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Engineering endosomolytic nanocarriers of diverse morphologies using confined impingement jet mixing.
    Pagendarm HM; Stone PT; Kimmel BR; Baljon JJ; Aziz MH; Pastora LE; Hubert L; Roth EW; Almunif S; Scott EA; Wilson JT
    Nanoscale; 2023 Oct; 15(39):16016-16029. PubMed ID: 37753868
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Negatively charged chitosan nanoparticles prepared by ionotropic gelation for encapsulation of positively charged proteins.
    Marques Gonçalves M; Florencio Maluf D; Pontarolo R; Ketzer Saul C; Almouazen E; Chevalier Y
    Int J Pharm; 2023 Jul; 642():123164. PubMed ID: 37356507
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Albumin-mediated incorporation of water-insoluble therapeutics in layer-by-layer assembled thin films and microcapsules.
    Mohanta V; Madras G; Patil S
    J Mater Chem B; 2013 Oct; 1(37):4819-4827. PubMed ID: 32261163
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Automated High-Throughput Synthesis of Protein-Loaded Polyanhydride Nanoparticle Libraries.
    Goodman JT; Mullis AS; Dunshee L; Mitra A; Narasimhan B
    ACS Comb Sci; 2018 May; 20(5):298-307. PubMed ID: 29617113
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Effects of Control Factors on Protein-Polyelectrolyte Complex Coacervation.
    Zhou J; Wan Y; Cohen Stuart MA; Wang M; Wang J
    Biomacromolecules; 2023 Dec; 24(12):5759-5768. PubMed ID: 37955264
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A facile approach for crosslinker free nano self assembly of protein for anti-tumor drug delivery: factors' optimization, characterization and in vitro evaluation.
    Asghar S; Salmani JM; Hassan W; Xie Y; Meng F; Su Z; Sun M; Xiao Y; Ping Q
    Eur J Pharm Sci; 2014 Oct; 63():53-62. PubMed ID: 25004412
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Encapsulation of Protein-Polysaccharide HIP Complex in Polymeric Nanoparticles.
    Gaudana R; Khurana V; Parenky A; Mitra AK
    J Drug Deliv; 2011; 2011():458128. PubMed ID: 21603214
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Encapsulation of Large-Size Plasmids in PLGA Nanoparticles for Gene Editing: Comparison of Three Different Synthesis Methods.
    López-Royo T; Sebastián V; Moreno-Martínez L; Uson L; Yus C; Alejo T; Zaragoza P; Osta R; Arruebo M; Manzano R
    Nanomaterials (Basel); 2021 Oct; 11(10):. PubMed ID: 34685164
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Chitosan nanoparticle as protein delivery carrier--systematic examination of fabrication conditions for efficient loading and release.
    Gan Q; Wang T
    Colloids Surf B Biointerfaces; 2007 Sep; 59(1):24-34. PubMed ID: 17555948
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Polyelectrolyte nanoparticles based on water-soluble chitosan-poly(L-aspartic acid)-polyethylene glycol for controlled protein release.
    Shu S; Zhang X; Teng D; Wang Z; Li C
    Carbohydr Res; 2009 Jul; 344(10):1197-204. PubMed ID: 19508912
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.