BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

523 related articles for article (PubMed ID: 31462078)

  • 21. Review on Bile Acids: Effects of the Gut Microbiome, Interactions with Dietary Fiber, and Alterations in the Bioaccessibility of Bioactive Compounds.
    Singh J; Metrani R; Shivanagoudra SR; Jayaprakasha GK; Patil BS
    J Agric Food Chem; 2019 Aug; 67(33):9124-9138. PubMed ID: 30969768
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Drug Metabolism by the Host and Gut Microbiota: A Partnership or Rivalry?
    Swanson HI
    Drug Metab Dispos; 2015 Oct; 43(10):1499-504. PubMed ID: 26261284
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Gut metabolome meets microbiome: A methodological perspective to understand the relationship between host and microbe.
    Lamichhane S; Sen P; Dickens AM; Orešič M; Bertram HC
    Methods; 2018 Oct; 149():3-12. PubMed ID: 29715508
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microbiota and HDL metabolism.
    Nakaya K; Ikewaki K
    Curr Opin Lipidol; 2018 Feb; 29(1):18-23. PubMed ID: 29135690
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multi-Omics Reveals that Lead Exposure Disturbs Gut Microbiome Development, Key Metabolites, and Metabolic Pathways.
    Gao B; Chi L; Mahbub R; Bian X; Tu P; Ru H; Lu K
    Chem Res Toxicol; 2017 Apr; 30(4):996-1005. PubMed ID: 28234468
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Gut microbiome and its role in cardiovascular diseases.
    Ahmadmehrabi S; Tang WHW
    Curr Opin Cardiol; 2017 Nov; 32(6):761-766. PubMed ID: 29023288
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Contribution of the Gut Microbiome to Drug Disposition, Pharmacokinetic and Pharmacodynamic Variability.
    Tsunoda SM; Gonzales C; Jarmusch AK; Momper JD; Ma JD
    Clin Pharmacokinet; 2021 Aug; 60(8):971-984. PubMed ID: 33959897
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Role of Gut Microbiota in Hypertension Pathogenesis and the Efficacy of Antihypertensive Drugs.
    Xiong Y; Xiong Y; Zhu P; Wang Y; Yang H; Zhou R; Shu Y; Zhou H; Li Q
    Curr Hypertens Rep; 2021 Sep; 23(8):40. PubMed ID: 34487269
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The role of gut microbiota in fetal methylmercury exposure: Insights from a pilot study.
    Rothenberg SE; Keiser S; Ajami NJ; Wong MC; Gesell J; Petrosino JF; Johs A
    Toxicol Lett; 2016 Feb; 242():60-67. PubMed ID: 26626101
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Impact of the Gut Microbiota on Drug Metabolism and Clinical Outcome.
    Enright EF; Gahan CG; Joyce SA; Griffin BT
    Yale J Biol Med; 2016 Sep; 89(3):375-382. PubMed ID: 27698621
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Differential Profiles of Gut Microbiota and Metabolites Associated with Host Shift of
    Yang FY; Saqib HSA; Chen JH; Ruan QQ; Vasseur L; He WY; You MS
    Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32872681
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The emerging role of gut microbial metabolism on cardiovascular disease.
    Kasahara K; Rey FE
    Curr Opin Microbiol; 2019 Aug; 50():64-70. PubMed ID: 31693963
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Manipulation and assessment of gut microbiome for metabolic studies.
    Satoor SN; Patil DP; Kristensen HD; Joglekar MV; Shouche Y; Hardikar AA
    Methods Mol Biol; 2014; 1194():449-69. PubMed ID: 25064120
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Insights from pharmacokinetic models of host-microbiome drug metabolism.
    Zimmermann-Kogadeeva M; Zimmermann M; Goodman AL
    Gut Microbes; 2020 May; 11(3):587-596. PubMed ID: 31564204
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High-Fiber Diet and Acetate Supplementation Change the Gut Microbiota and Prevent the Development of Hypertension and Heart Failure in Hypertensive Mice.
    Marques FZ; Nelson E; Chu PY; Horlock D; Fiedler A; Ziemann M; Tan JK; Kuruppu S; Rajapakse NW; El-Osta A; Mackay CR; Kaye DM
    Circulation; 2017 Mar; 135(10):964-977. PubMed ID: 27927713
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microbial endocrinology: host-bacteria communication within the gut microbiome.
    Sandrini S; Aldriwesh M; Alruways M; Freestone P
    J Endocrinol; 2015 May; 225(2):R21-34. PubMed ID: 25792117
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ginsenosides, catechins, quercetin and gut microbiota: Current evidence of challenging interactions.
    Santangelo R; Silvestrini A; Mancuso C
    Food Chem Toxicol; 2019 Jan; 123():42-49. PubMed ID: 30336256
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Role of the gut microbiome in cardiovascular drug response: The potential for clinical application.
    Steiner HE; Gee K; Giles J; Knight H; Hurwitz BL; Karnes JH
    Pharmacotherapy; 2022 Feb; 42(2):165-176. PubMed ID: 34820870
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interaction between gut microbiome and cardiovascular disease.
    Peng J; Xiao X; Hu M; Zhang X
    Life Sci; 2018 Dec; 214():153-157. PubMed ID: 30385177
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Unraveling the drivers and consequences of gut microbiota disruption in Fabry disease: the lyso-Gb3 link.
    Sanchez-Niño MD; Aguilera-Correa JJ; Politei J; Esteban J; Requena T; Ortiz A
    Future Microbiol; 2020 Mar; 15():227-231. PubMed ID: 32271110
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.