BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 31462080)

  • 1. Formation of cholesterol Bilayer Domains Precedes Formation of Cholesterol Crystals in Membranes Made of the Major Phospholipids of Human Eye Lens Fiber Cell Plasma Membranes.
    Mainali L; Pasenkiewicz-Gierula M; Subczynski WK
    Curr Eye Res; 2020 Feb; 45(2):162-172. PubMed ID: 31462080
    [No Abstract]   [Full Text] [Related]  

  • 2. Cholesterol and cholesterol bilayer domains inhibit binding of alpha-crystallin to the membranes made of the major phospholipids of eye lens fiber cell plasma membranes.
    Timsina R; Trossi-Torres G; O'Dell M; Khadka NK; Mainali L
    Exp Eye Res; 2021 May; 206():108544. PubMed ID: 33744256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Confocal Microscopy Confirmed that in Phosphatidylcholine Giant Unilamellar Vesicles with very High Cholesterol Content Pure Cholesterol Bilayer Domains Form.
    Raguz M; Kumar SN; Zareba M; Ilic N; Mainali L; Subczynski WK
    Cell Biochem Biophys; 2019 Dec; 77(4):309-317. PubMed ID: 31625023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical properties of the high cholesterol-containing membrane: An AFM study.
    Khadka NK; Timsina R; Rowe E; O'Dell M; Mainali L
    Biochim Biophys Acta Biomembr; 2021 Aug; 1863(8):183625. PubMed ID: 33891910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cholesterol Bilayer Domains in the Eye Lens Health: A Review.
    Widomska J; Subczynski WK; Mainali L; Raguz M
    Cell Biochem Biophys; 2017 Dec; 75(3-4):387-398. PubMed ID: 28660427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Is the cholesterol bilayer domain a barrier to oxygen transport into the eye lens?
    Plesnar E; Szczelina R; Subczynski WK; Pasenkiewicz-Gierula M
    Biochim Biophys Acta Biomembr; 2018 Feb; 1860(2):434-441. PubMed ID: 29079282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of cholesterol bilayer domains precedes formation of cholesterol crystals in cholesterol/dimyristoylphosphatidylcholine membranes: EPR and DSC studies.
    Mainali L; Raguz M; Subczynski WK
    J Phys Chem B; 2013 Aug; 117(30):8994-9003. PubMed ID: 23834375
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Properties of membranes derived from the total lipids extracted from clear and cataractous lenses of 61-70-year-old human donors.
    Mainali L; Raguz M; O'Brien WJ; Subczynski WK
    Eur Biophys J; 2015 Feb; 44(1-2):91-102. PubMed ID: 25502634
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of cholesterol bilayer domains in intact biological membranes: Methodology development and its application to studies of eye lens fiber cell plasma membranes.
    Mainali L; O'Brien WJ; Subczynski WK
    Exp Eye Res; 2019 Jan; 178():72-81. PubMed ID: 30278157
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulations of simple Bovine and Homo sapiens outer cortex ocular lens membrane models with a majority concentration of cholesterol.
    Adams M; Wang E; Zhuang X; Klauda JB
    Biochim Biophys Acta Biomembr; 2018 Oct; 1860(10):2134-2144. PubMed ID: 29169746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Membrane Models and Experiments Suitable for Studies of the Cholesterol Bilayer Domains.
    Mardešić I; Boban Z; Subczynski WK; Raguz M
    Membranes (Basel); 2023 Mar; 13(3):. PubMed ID: 36984707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Membrane elasticity modulated by cholesterol in model of porcine eye lens-lipid membrane.
    Khadka NK; Mortimer MF; Marosvari M; Timsina R; Mainali L
    Exp Eye Res; 2022 Jul; 220():109131. PubMed ID: 35636489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alpha-Crystallin Association with the Model of Human and Animal Eye Lens-Lipid Membranes is Modulated by Surface Hydrophobicity of Membranes.
    Timsina R; Trossi-Torres G; Thieme J; O'Dell M; Khadka NK; Mainali L
    Curr Eye Res; 2022 Jun; 47(6):843-853. PubMed ID: 35179407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calorimetric and spectroscopic studies of the effects of cholesterol on the thermotropic phase behavior and organization of a homologous series of linear saturated phosphatidylglycerol bilayer membranes.
    McMullen TP; Lewis RN; McElhaney RN
    Biochim Biophys Acta; 2009 Feb; 1788(2):345-57. PubMed ID: 19083990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lipid differentiation in MP26 junction enriched membranes of bovine lens fiber cells.
    Baumann CG; Malewicz B; Anderson WH; Lampe PD; Johnson RG; Baumann WJ
    Biochim Biophys Acta; 1996 Sep; 1303(2):145-53. PubMed ID: 8856044
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cholesterol in bilayers of sphingomyelin or dihydrosphingomyelin at concentrations found in ocular lens membranes.
    Epand RM
    Biophys J; 2003 May; 84(5):3102-10. PubMed ID: 12719240
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Electrical Parameters and Cholesterol Concentration on Giant Unilamellar Vesicles Electroformation.
    Boban Z; Puljas A; Kovač D; Subczynski WK; Raguz M
    Cell Biochem Biophys; 2020 Jun; 78(2):157-164. PubMed ID: 32319021
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cholesterol enhances surface water diffusion of phospholipid bilayers.
    Cheng CY; Olijve LL; Kausik R; Han S
    J Chem Phys; 2014 Dec; 141(22):22D513. PubMed ID: 25494784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Homogeneous and Heterogeneous Bilayers of Ternary Lipid Compositions Containing Equimolar Ceramide and Cholesterol.
    González-Ramírez EJ; Artetxe I; García-Arribas AB; Goñi FM; Alonso A
    Langmuir; 2019 Apr; 35(15):5305-5315. PubMed ID: 30924341
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in the Properties and Organization of Human Lens Lipid Membranes Occurring with Age.
    Mainali L; Raguz M; O'Brien WJ; Subczynski WK
    Curr Eye Res; 2017 May; 42(5):721-731. PubMed ID: 27791387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.